Bilan environnemental 2014

QUALITÉ DE L'AIR À MONTRÉAL

Service de l'environnement

Préparé par Diane Boulet et Sonia Melançon, chimistes, responsables du Réseau de surveillance de la qualité de l'air et Rachel Mallet, agente de recherche

Avec la collaboration de

Gervais Beaulieu
Christiane Bessette
Véronique Chalut
Audrey Giasson
Christian Roy
Abderaouf Sekki

Mise à jour : 6 décembre 2016

Montréal #

Service de l'environnement Division de la planification et du suivi environnemental 1555, rue Carrie-Derick, 2^e étage Montréal (Québec) H3C 6W2

Renseignements: 514 280-4368

Site Internet : www.rsqa.qc.ca

Table des matières

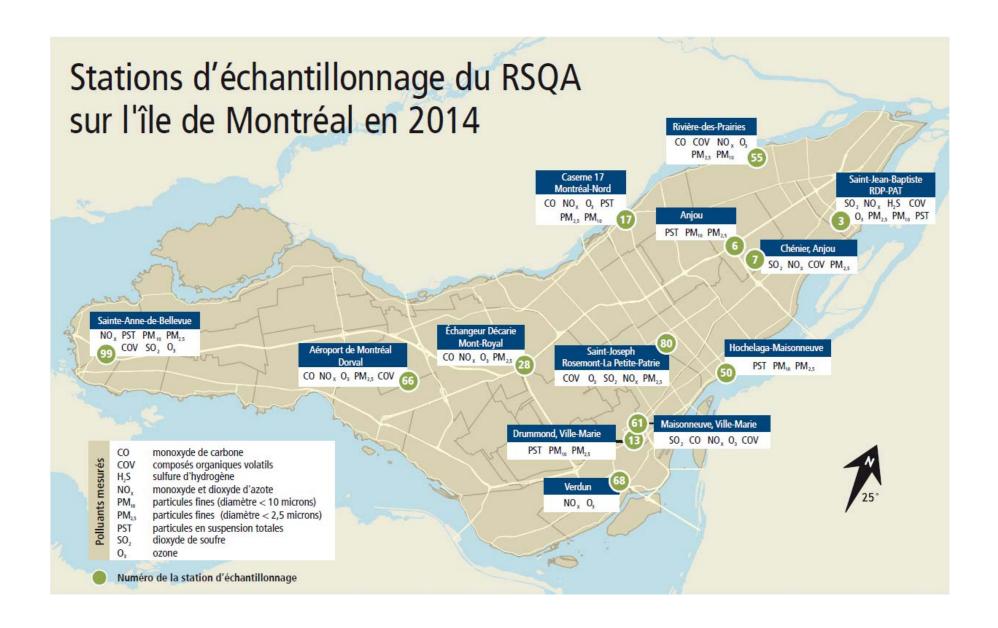
Faits saillants 2014	1
Description du réseau	2
Critères pour l'indice de qualité de l'air (IQA)	3
Normes des polluants de qualité de l'air	4
Facteurs de conversion & percentiles	5
Sommaire des résultats	
 Dioxyde de soufre (SO₂) 	6
 — Sulfure d'hydrogène (H₂S) 	6
— Monoxyde de carbone (CO)	7
— Ozone (O ₃)	8-9
 Dioxyde d'azote (NO₂) 	10
Monoxyde d'azote (NO)	11
 Particules en suspension totales (PST) 	12
 Particules respirables (PM₁₀) 	13-14
 Particules respirables (PM_{2.5}) 	15-18
— Anions	19
 Composés organiques volatils 	
- non polaires	20-21
- polaires	22
 Composés organiques semi-volatils 	
-hydrocarbures aromatiques polycycliques	23

Faits saillants 2014

PORTRAIT DE LA QUALITÉ DE L'AIR

- Les particules fines (PM_{2,5}) sont responsables de 63 jours de mauvaise qualité de l'air.
 De ce nombre, 10 jours de smog ont été observés en hiver. Il n'y a eu aucun jour de smog durant l'été.
- La proportion des heures au cours desquelles la qualité de l'air a été mauvaise durant l'année est inférieure ou égale à 1 %, sauf à la station 13 (15 % dus à la présence d'un four à pizza au bois) et à la station 17 (12 % dus à la présence d'un clos de voirie).

TRANSPORT ROUTIER, SOURCE DE POLLUTION


- Les concentrations des polluants gazeux associés à la circulation routière (monoxyde de carbone et dioxyde d'azote) varient en fonction des heures de la journée et produisent un patron différent selon les périodes d'affluence. Ces concentrations diminuent durant les fins de semaine.
- Les concentrations annuelles du formaldéhyde ont diminué depuis les 10 dernières années, tandis que celles de l'acétone se maintiennent. Ces résultats sont similaires à ceux observés dans d'autres villes canadiennes.

DOSSIER: CHAUFFAGE AU BOIS

- L'impact du chauffage résidentiel au bois sur la santé et l'environnement a été un sujet particulièrement documenté en 2014. Pour la première fois, un bilan des émissions de PM_{2,5} a été réalisé pour l'agglomération montréalaise. Malgré qu'il soit établi à partir d'estimations, ce bilan indique que le chauffage résidentiel au bois serait la deuxième source d'émission des PM_{2,5} derrière les transports, toutes catégories confondues (maritime, routier, aéroportuaire).
- Les résultats d'une étude réalisée avec des échantillons prélevés à la station 55, située à Rivière-des-Prairies, ont démontré que, lorsque la qualité de l'air est mauvaise, le tiers du poids des particules fines provient de la combustion du bois.
- Le projet de règlement concernant les appareils et les foyers permettant l'utilisation d'un combustible solide a fait l'objet d'une consultation publique, dont le résultat sera connu en 2015, à l'occasion du dépôt des recommandations de la Commission permanente sur l'eau, le développement durable et les grands parcs.

NOUVELLES NORMES DE QUALITÉ DE L'AIR AMBIANT

 De nouvelles normes canadiennes de qualité de l'air ambiant pour les particules fines et l'ozone entreront en vigueur en 2015. Une étude comparative de ces normes et des résultats obtenus sur le territoire de l'agglomération montréalaise démontre que ces normes sont respectées pour les années 2012-2014.

Critères pour l'indice de qualité de l'air (IQA) des polluants mesurés par le Réseau de surveillance de la qualité de l'air

		Critères pour l'indice de qualité de l'ai (IQA)							
Polluants		Ville de Montréal ¹	Québec ²						
		μg/m ³	μg/m ³						
Dioxyde de soufre (SO ₂)	4 min 10 min	500	525						
Monoxyde de carbone (CO)	1 h	35000	35000						
Ozone (O ₃)	1 h	160	160						
Dioxyde d'azote (NO ₂)	1 h	400	400						
Particules (PM ₁₀) ³	24 h	50							
Particules fines (PM _{2,5}) ³	3 h 24 h	35 25	35						

¹ Règlement 2001-10 CMM (90 ex-CUM)

²La méthode de calcul de l'indice de la qualité de l'air (IQA) http://www.iqa.mddefp.gouv.qc.ca/contenu/calcul.htm, site web visité le 27 octobre 2015

³ Valeur utilisée pour le calcul de l'indice de l'IQA (échantillonnage séquentiel)

Normes des polluants mesurés par le RSQA

			Nor	mes et obj	ectifs		
Polluants		Ville de l	Montréal ¹	Canadi	ennes²	Amério	caines ³
Folidants		μg/m ³	ppb	μg/m ³	ppb	μg/m ³	ppb
Dioxyde de soufre (SO ₂)	1 h 3 h 24 h 1 an	1300 260 52	500 100 20	900 300 60	323 115 23	1300 195 365 78	500 ⁵ 75 ⁵ 140 30
Monoxyde de carbone (CO)	1 h 8 h	35000 15000	30000 13000	35000 15000	30000 13000	40000 10000	35000 9000
Ozone (O ₃)	1 h 8 h 24 h 1 an	160 75 50 30	82 38 25 15	160 124 ⁴ 50 30	82 63 25 15	146	75
Dioxyde d'azote (NO ₂)	1 h 24 h 1an	400 200 100	213 106 53	400 200 100	213 106 53	189 100	100 53
Sulfure d'hydrogène (H ₂ S)	1 h 24 h	11 5	7,9 3,6				
Monoxyde d'azote (NO)	1 h 8 h	1300 1000	1000 770				
Particules en suspension totales (PST)	24 h 1 an	150 70		120 70			
Particules (PM ₁₀)	24 h	50				150	
Particules fines (PM _{2,5})	24h 1 an			28 ⁴		35 15	
Benzène	1h 8h	260 150					
Toluène	1h 8h	2000 2000					
Xylènes (M, P, O)	1h 8h	2300 2300					

¹ Règlement 2001-10 CMM (90 ex-CUM)

Nouvelles normes pour le SO2 (1h et 3h) pour les zones où les normes de 1971 (24 h et 1 an) sont non atteignables. Pour les zones où il n'y a pas de problèmes de SO2, les normes de 1971 restent en vigueurs mais sinon elles sont révoquées. http://www.epa.gov/airquality/sulfurdioxide/pdfs/20110411so2designationsguidance.pdf visité le 4 décembre 2015.

² Niveau acceptable du Tableau des objectifs nationaux afférents à la qualité de l'air ambiant. Référence : http://ceqg-rcqe.ccme.ca/download/fr/45/ visité le 4 décembre 2015.

³ National Ambiant Air Quality Standards de l'EPA. Référence : http://www3.epa.gov/ttn/naaqs/criteria.html visité le 4 décembre 2015.

⁴ Normes canadiennes de qualité de l'air ambiant (NCQAA) :

Ozone: la moyenne du 4^e maximum des 8 heures mobiles quotidien, calculée sur trois années consécutives doit être inférieure à 63 ppb d'ici à 2015 et 62 ppb en 2020.

⁻ PM_{2,5}: la moyenne des 98^e percentile des moyennes quotidiennes, calculée sur trois années consécutives, doit être inférieure à 28 μg/m³ d'ici 2015 et 27 μg/m³ en 2020. http://www.ccme.ca/files/Resources/air/agms/pn 1483 gdad eng.pdf visité le 16 novembre 2015

Facteurs de conversion

Les facteurs de correction sont pour les conditions de référence de pression et température standards (0 degré Celsius et 100kPa)

Polluant	Facteur de conversion (1 µg/m³ = X ppb)
СО	0,87
H ₂ S	0,71
NO	0,81
NO ₂	0,53
O ₃	0,51
SO ₂	0,38

Note sur les percentiles

Le percentile (p%) est une valeur telle qu'au moins p% des données ont une valeur inférieure ou égale à cette valeur. Le percentile fournit des informations sur la manière dont les données sont réparties dans l'intervalle entre la plus petite et la plus grande valeur.

Dioxyde de soufre (SO₂)

Données horaires 2014

Unités : microgrammes/mètre cube (μ g/m³) SO₂ 1h Règ. 2001-10 : 1300 μ g/m³ SO₂ 24h Règ. 2001-10 : 260 μ g/m³

													Non	nbre de
	Percentiles Moy Min Max Max												dépassement	
Station	Num	10%	30%	50%	70%	90%	98%	99%	1h	1h	1h	24h	1h	24h
3	8304	0	1	2	4	11	28	39	4,8	0	173	39	0	0
7	8730	0											0	0
61	8744	0	0	1	2	6	15	20	2,4	0	181	30	0	0
80	7894	0	1	1	3	6	14	19	2,6	0	45	16	0	0
99	8643	0	0	1	1	4	10	14	1,7	0	67	13	0	0

Sulfure d'hydrogène (H₂S)

Données horaires 2014

Unités : microgrammes/mètre cube (μ g/m³) H₂ S 1h Règ. 2001-10 : 11 μ g/m³

H₂S 24h Règ. 2001-10 : 5 μg/m³

											Non	nbre de			
Percentiles											Min	Max	Max	dépa	ssement
	Station	Num	10%	30%	50%	70%	90%	98%	99%	1h	1h	1h	24h	1h	24h
	3	8590	0,0	0,0	0,2	0,4	1,1	1,7	1,8	0,36	0	4,7	3,4	0	0

Monoxyde de carbone (CO)

Données horaires 2014

Unités : microgrammes/mètre cube (μ g/m³) CO 1h Règ. 2001-10 : 15000 μ g/m³ CO 8h Règ. 2001-10 : 35000 μ g/m³

													Nomb	re de
	Percentiles Moy Min Max Max												dépass	sement
Station	Num	10%	30%	50%	70%	90%	98%	99%	1h	1h	1h	8h	1h	8h
17	8707	177	210	243	289	408	667	805	276	113	1647	1045	0	0
28	8697	221	275	321	381	501	685	781	347	105	1671	1321	0	0
55	8599	156	189	217	253	345	523	613	240	59	1439	928	0	0
61	8190	254	340	408	486	619	775	853	428	139	1447	1257	0	0
66	8480	160	196	230	270	369	545	631	252	86	1365	912	0	0

Ozone (O₃)

Données horaires 2014

Unités : microgrammes/mètre cube (μ g/m³) O₃ 1h Règ. 2001-10 : 160 μ g/m³

O₃ 1h Reg. 2001-10 : 160 μg/m³ O₃ 8h Règ. 2001-10 : 75 μg/m³ O₃ 24h Règ. 2001-10 : 50 μg/m³

													Nombre	ae		
				P	ercentile	s			Moy	Min	Max	Max	Max		dépasser	ment
Station	Num	10%	30%	50%	70%	90%	98%	99%	1h	1h	1h	8h	24h	1h	8h	24h
3	8567	17	34	46	57	74	90	97	45,8	0	124	110	88	0	582	3241
17	8710	17	36	48	59	77	96	102	47,8	1	133	123	96	0	814	3888
28	8678	9	25	37	48	63	79	83	36,8	0	118	100	78	0	157	1605
55	8709	19	36	50	60	76	93	98	48,4	0	125	120	90	0	771	4082
61	8686	13	26	37	47	64	82	87	38,0	0	107	96	82	0	224	1796
66	8692	15	34	47	59	76	92	97	46,2	0	133	118	88	0	728	3666
68	8336	14	32	45	56	72	88	93	43,8	0	116	108	86	0	426	2824
80	7941	16	34	46	57	74	92	99	45,6	0	126	118	92	0	540	3093
99	8647	21	40	54	65	81	96	102	52,0	0	133	122	96	0	1184	4710

Le dépassement des normes 8 heures et 24 heures (mobiles) est fréquemment observé. Cependant, le critère de 160 μg/m³ (ou 82 ppb) utilisé pour le calcul des jours de mauvaise qualité de l'air est basé sur une moyenne horaire et il n'y a pas eu de dépassement en 2014.

Normes canadiennes de qualité de l'air ambiant (NCQAA)

Moyenne sur trois années consécutives

Unités : microgrammes/mètre cube (μg/m³) O₃ NCQAA : 124 μg/m³ (63 ppb)

4 ^e maximum quotidien 8h mobiles										
Station	2012	2013	2014	Moyenne sur 3 ans						
3	116	110	100	109						
17	N/A	N/A	108	108						
28	104	95	93	97						
55	123	112	102	112						
61	112	97	93	101						
66	125	109	100	111						
68	118	113	97	109						
80	120	108	105	111						
99	127	110	107	115						

Dioxyde d'azote (NO₂)

Données horaires 2014

Unités : microgrammes/mètre cube (μ g/m³) NO₂ 1h Règ. 2001-10 : 400 μ g/m³ NO₂ 24h Règ. 2001-10 : 200 μ g/m³

											Noml	ore de		
				Per	centiles				Moy	Min	Max	Max	dépas	sement
Station	Num	10%	30%	50%	70%	90%	98%	99%	1h	1h	1h	24h	1h	24h
3	8561	5	9	13	20	33	55	64	17,0	0	90	60	0	0
7	8681	5	9	13	20	34	58	70	17,1	1	101	73	0	0
17	8700	6	10	14	21	39	63	73	18,8	1	110	73	0	0
28	8682	10	17	25	34	51	78	86	28,5	3	124	81	0	0
55	8659	3	6	9	15	28	49	60	12,8	0	103	58	0	0
61	8712	13	20	26	35	51	72	79	29,8	3	118	71	0	0
66	8675	4	9	13	21	39	63	70	18,2	0	115	71	0	0
68	8298	6	11	16	24	41	64	71	20,1	0	101	58	0	0
80	7757	6	10	14	22	38	63	73	19,0	1	103	68	0	0
99	8578	1	4	7	12	26	52	64	10,8	0	103	68	0	0

Monoxyde d'azote (NO)

Données horaires 2014

Unités : microgrammes/mètre cube (μg/m³) NO 1h Règ. 2001-10 : 1300 μg/m³ NO 8h Règ. 2001-10 : 1000 μg/m³

											Nomb	ore de		
				Perd	centiles				Moy	Min	Max	Max	dépass	sement
Station	Num	10%	30%	50%	70%	90%	98%	99%	1h	1h	1h	8h	1h	8h
3	8562	0	1	1	3	7	19	29	3,1	0	132	96	0	0
7	8680	0	0	1	2	6	23	37	2,8	0	137	71	0	0
17	8700	1	2	3	6	14	39	56	6,3	0	144	86	0	0
28	8682	1	4	7	15	33	71	91	14,1	0	322	169	0	0
55	8660	0	0	1	1	3	13	24	1,8	0	120	53	0	0
61	8712	1	4	7	11	23	52	73	10,9	0	292	135	0	0
66	8675	0	0	1	3	10	37	52	4,2	0	147	79	0	0
68	8298	0	1	2	4	13	41	58	5,3	0	179	105	0	0
80	7757	0	1	2	4	11	27	37	4,5	0	124	79	0	0
99	8578	0	0	0	0	3	16	25	1,5	0	131	86	0	0

Particules en suspension totales (PST)

Données 24h 2014

(Échantillonnage aux six jours)

Échantillonneurs à grands débits

Unités : microgrammes/mètre cube (µg/m³) PST 24h Règ. 2001-10: 150 µg/m³

					Nombre de
		Moy	Min	Max	dépassement
Station	Num	24h	24h	24h	24h
3	57	40,2	11,8	92,0	0
6	54	59,1	16,8	167,4	2
13	60	49,5	13,9	141,4	0
50	60	42,9	14,1	104,3	0
99	52	19.0	3.8	44.6	0

Particules en suspension respirables (PM₁₀)

Données 24h 2014

(Échantillonnage aux six jours)

Échantillonneurs à grands débits avec tête sélective (SSI)

Unités : microgrammes/mètre cube (µg/m³) PM10 24h critère IQA: 50 µg/m³

			Nombre de			
			Moy Min		dépassement	
Station	Num	24h	24h	24h	24h	
3	57	16,37	2,96	42,12	0	
13	60	18,89	2,23	65,67	1	
50	60	17,07	3,44	43,46	0	
99	52	9,78	1,25	30,33	0	

Particules en suspension respirables (PM₁₀)

Données 24h 2014

(Échantillonnage aux six jours)

Échantillonneurs avec dichotomus-partisol Analyses réalisées par le laboratoire d'Environnement Canada

Unités : microgrammes/mètre cube (µg/m³) PM10 24h critère IQA: 50 µg/m³

					Nombre de
		Moy	Min	Max	dépassement
Station	Num	24h	24h	24h	24h
6	47	18,1	3,7	54,3	1
55	113	12,8	2,7	36,2	0
80	46	17,9	3,5	50,2	1

Particules en suspension respirables (PM_{2.5})

Données horaires 2014

Échantillonnage en continu (TEOM-FDMS)

Unités: microgrammes/mètre cube (µg/m³)

PM_{2,5} 1h : Aucune norme* PM_{2,5} 24h critère IQA : 25 µg/m³

				Р	ercentile	:S			Moy	Min	Max	Max	dépassement
Station	Num	10%	30%	50%	70%	90%	98%	99%	1h	1h	1h	24h	24h
3	8637	2	5	7	10	15	25	29	8,1	0	56	34	55
7	8513	1	4	6	9	16	27	32	7,8	0	49	39	112
13	8545	5	9	12	16	25	38	45	14,0	0	125	39	304
17	8532	3	7	9	13	19	28	31	10,4	0	65	34	73
28	8565	3	6	8	12	18	28	32	9,8	0	69	38	111
55	8445	2	4	6	9	16	26	32	7,6	0	49	32	73
66	8472	3	5	8	11	17	26	30	9,2	0	83	27	61
50	8566	2	5	7	10	17	28	32	8,7	0	372	36	38
80	7607	2	5	7	10	15	26	30	8,1	0	46	35	25
99	8602	2	4	6	9	15	24	28	7,4	0	46	37	27

^{*}Le critère utilisé pour le calcul d'un jour de mauvaise qualité de l'air est de 35 μg/m³, moyenne mobile 3 heures.

Particules en suspension respirables $(PM_{2,5})$

Données 3 heures mobiles 2014 Échantillonnage en continu (TEOM-FDMS)

> Unités : microgrammes/mètre cube (μg/m³) PM_{2,5} 3h critère IQA : 35 μg/m³

											Nombre de
				P	ercentile	es			Moy	Max	dépassement
Station	Num	10%	30%	50%	70%	90%	98%	99%	3h	3h	3h
3	8657	3	5	7	10	15	25	29	8	42	14
7	8543	2	4	6	9	16	26	31	8	43	47
13	8565	6	9	13	17	24	34	39	14	83	157
17	8544	4	7	9	13	18	27	30	10	44	28
28	8590	4	6	8	11	17	27	31	10	63	48
50	8589	2	5	7	10	16	28	32	9	160	50
55	8340	2	4	6	9	15	26	31	8	45	35
66	8488	3	6	8	11	17	25	29	9	48	65
80	7618	3	5	7	9	15	26	29	8	43	52
99	8627	2	4	6	9	14	23	28	7	44	55

Normes canadiennes de qualité de l'air ambiant (NCQAA)

Moyenne sur trois années consécutives

Unités : microgrammes/mètre cube (μ g/m³) PM_{2,5} NCQAA : 28 μ g/m³

Valeur a	annuelle du 9	8 ^e percentile	de la moye	nne 24h
Station	2012	2013	2014	Moyenne sur 3 ans
3	24	24	20	23
7	25	27	23	25
13	31	28	27	29*
17	N/A	N/A	22	22
28	28	24	24	25
50	30	27	23	27
55	28	24	24	25
66	29	26	21	25
80	27	26	N/A	27
99	22	22	19	21

^{*}La mesure des particules fines à cette station est influencée par la présence d'un four à bois cuisant de la pizza

Particules en suspension respirables (PM_{2.5})

Données 24h 2014

(Échantillonnage aux six jours)

Échantillonnage avec dichotomus-partisol

Analyses réalisées par le laboratoire d'Environnement Canada

Unités : microgrammes/mètre cube (µg/m³) PM_{2,5} 24h critère IQA : 25 µg/m³

					Nombre de
		Moy	Min	Max	dépassement
Station	Num	24h	24h	24h	24h
6	47	7,1	1,5	23,1	0
55	113	6,7	0,9	30,5	1
80	46	6,8	1,3	14,9	0

Analyse des anions

Données 24h 2014

(Échantillonnage aux six jours)

Particules en suspension totales (PST)

Unités : microgrammes/mètre cube (µg/m³)

Anions: Aucune norme

			Sulf	ates			Nitra	ates		Chlorures			
Station	Nombre de résultats	Moy. géom.	Moy. arith.	Min	Max	Moy. géom.	Moy. arith.	Min	Max	Moy. géom.	Moy. arith.	Min	Max
3	57	1,83	2,11	0,42	5,62	0,85	1,25	0,15	6,82	0,33	2,09	0,00	24,28
6	54	1,82	2,17	0,54	5,92	0,94	1,42	0,20	10,01	0,66	6,10	0,00	50,67
13	60	1,64	1,96	0,13	7,08	0,97	1,39	0,17	7,57	0,56	2,97	0,00	42,09
99	52	1,27	1,53	0,25	4,80	0,73	1,15	0,13	9,17	0,09	0,88	0,00	9,04

Veuillez noter qu'à partir de janvier 2014, les anions sont analysés sur les filtres de PST seulement

Composés organiques volatils (non-polaires)

Données 24h 2014

Les résultats des analyses des composés organiques volatils (non-polaires) réalisées par le laboratoire d'Environnement Canada ne sont pas disponibles.

Pour toute information concernant ces résultats, veuillez nous adresser une demande par courriel à <u>environnement@ville.montreal.qc.ca</u> en prenant soin d'indiquer <u>Demande d'information</u> — Air dans la rubrique objet.

Composés organiques volatils (non-polaires)

Données horaires 2014

Les échantillonnages sont effectués en continu avec un AirmoBTX 1000 (Chromatotec). Cet appareil est un chromatographe en phase gazeuse avec détecteur à ionisation de flamme (GC-FID). Les échantillons sont prélevés chaque 15 minutes pour un total de 96 analyses par jour comprenant deux calibrations avec un standard interne de benzène.

Unités : microgrammes/mètre cube (μg/m³)
Benzène 1h Règ. 2001-10: 260 μg/m³
Toluène 1h Règ. 2001-10: 2000 μg/m³
Xylènes (M, P, O) 1h Règ. 2001-10: 2300 μg/m³

Benzène 8h Règ. 2001-10: 150 μg/m³ Toluène 8h Règ. 2001-10: 2000 μg/m³ Xylènes (M, P, O) 8h Règ. 2001-10: 2300 μg/m³

Éthylbenzène : Aucune norme

													Nombre de	
	Percentiles								Moy	Min	Max	Max	dépass	ement
Station	Num	10%	30%	50%	70%	90%	98%	99%	1h	1h	1h	8h	1h	8h
Benzène	8546	0	0	0	1	2	9	13	1,1	0	57	30	0	0
Toluène	8546	0	1	1	2	4	13	21	2,3	0	138	65	0	0
Éthylbenzène	8546	0	0	0	0	0	1	1	0,2	0	33	6		
M-P-xylène	8546	0	0	1	2	5	9	12	1,7	0	93	28	0	0
O-xylène	8546	0	0	0	0	1	1	2	0,2	0	25	5	0	0

Composés organiques volatils (polaires)

Données 24 heures 2014

Les échantillonnages sont effectués selon la méthode TO-11A pendant 24h à tous les 6 jours. En 2014, le maximum d'échantillons pouvant être prélevé s'élève à 61 échantillons. Les analyses sont effectuées par le laboratoire de la Ville de Montréal.

Unités : microgrammes/mètre cube (µg/m³) Aldéhydes-cétones : Aucune norme 24h

<L.D. Inférieur à limite de détection

Station		3	5	5	6	1	6	6	99			
Aldéhydes-cétones	Moy	Max	Moy	Max	Moy	Max	Moy	Max	Moy	Max	Limite de détection	
Méthyl Isobutyl cétone(MIBK)	0,07	0,77	0,06	0,76	0,07	0,88	0,08	1,06	0,08	1,06	0.03	
2,5-Diméthylbenzaldéhyde	<l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td>0,03</td><td><l.d.< td=""><td>0,04</td><td><l.d.< td=""><td>0,04</td><td><l.d.< td=""><td>0,04</td><td>0.03</td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<>	<l.d.< td=""><td><l.d.< td=""><td>0,03</td><td><l.d.< td=""><td>0,04</td><td><l.d.< td=""><td>0,04</td><td><l.d.< td=""><td>0,04</td><td>0.03</td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<>	<l.d.< td=""><td>0,03</td><td><l.d.< td=""><td>0,04</td><td><l.d.< td=""><td>0,04</td><td><l.d.< td=""><td>0,04</td><td>0.03</td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<>	0,03	<l.d.< td=""><td>0,04</td><td><l.d.< td=""><td>0,04</td><td><l.d.< td=""><td>0,04</td><td>0.03</td></l.d.<></td></l.d.<></td></l.d.<>	0,04	<l.d.< td=""><td>0,04</td><td><l.d.< td=""><td>0,04</td><td>0.03</td></l.d.<></td></l.d.<>	0,04	<l.d.< td=""><td>0,04</td><td>0.03</td></l.d.<>	0,04	0.03	
Acétaldéhyde	0,73	2,50	0,44	2,37	0,76	2,23	0,68	2,64	0,33	2,29	0.17	
Acétone	2,52	9,10	2,45	4,91	3,06	6,75	2,58	5,75	1,96	3,86	0.35	
Acroléine	0,04	0,28	0,06	0,25	0,09	0,26	0,06	0,30	0,03	0,33	0.01	
Benzaldéhyde	<l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td>0,29</td><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td>0.17</td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<>	<l.d.< td=""><td><l.d.< td=""><td>0,29</td><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td>0.17</td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<>	<l.d.< td=""><td>0,29</td><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td>0.17</td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<>	0,29	<l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td>0.17</td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<>	<l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td>0.17</td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<>	<l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td>0.17</td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<>	<l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td>0.17</td></l.d.<></td></l.d.<></td></l.d.<>	<l.d.< td=""><td><l.d.< td=""><td>0.17</td></l.d.<></td></l.d.<>	<l.d.< td=""><td>0.17</td></l.d.<>	0.17	
Butanone	0,25	0,75	0,24	0,57	0,28	0,56	0,31	0,76	0,22	0,56	0.03	
Butyraldéhyde	0,03	0,19	0,04	0,31	0,04	0,19	0,04	0,25	<l.d.< td=""><td>0,16</td><td>0.03</td></l.d.<>	0,16	0.03	
Crotonaldéhyde	<l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td>0,13</td><td><l.d.< td=""><td><l.d.< td=""><td>0.01</td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<>	<l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td>0,13</td><td><l.d.< td=""><td><l.d.< td=""><td>0.01</td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<>	<l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td>0,13</td><td><l.d.< td=""><td><l.d.< td=""><td>0.01</td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<>	<l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td>0,13</td><td><l.d.< td=""><td><l.d.< td=""><td>0.01</td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<>	<l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td>0,13</td><td><l.d.< td=""><td><l.d.< td=""><td>0.01</td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<>	<l.d.< td=""><td><l.d.< td=""><td>0,13</td><td><l.d.< td=""><td><l.d.< td=""><td>0.01</td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<>	<l.d.< td=""><td>0,13</td><td><l.d.< td=""><td><l.d.< td=""><td>0.01</td></l.d.<></td></l.d.<></td></l.d.<>	0,13	<l.d.< td=""><td><l.d.< td=""><td>0.01</td></l.d.<></td></l.d.<>	<l.d.< td=""><td>0.01</td></l.d.<>	0.01	
Formaldéhyde	0,91	4,32	1,08	3,43	1,49	3,79	1,33	3,75	0,71	2,64	0.07	
Hexanaldéhyde	0,14	0,87	0,10	0,41	0,16	0,35	0,14	0,52	<l.d.< td=""><td>0,17</td><td>0.07</td></l.d.<>	0,17	0.07	
Isovaléraldéhyde	<l.d.< td=""><td>0,06</td><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td>0.03</td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<>	0,06	<l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td>0.03</td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<>	<l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td>0.03</td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<>	<l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td>0.03</td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<>	<l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td>0.03</td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<>	<l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td>0.03</td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<>	<l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td>0.03</td></l.d.<></td></l.d.<></td></l.d.<>	<l.d.< td=""><td><l.d.< td=""><td>0.03</td></l.d.<></td></l.d.<>	<l.d.< td=""><td>0.03</td></l.d.<>	0.03	
m-Tolualdéhyde	<l.d.< td=""><td>0,08</td><td><l.d.< td=""><td>0,03</td><td><l.d.< td=""><td>0,07</td><td><l.d.< td=""><td>0,06</td><td><l.d.< td=""><td>0,07</td><td>0.01</td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<>	0,08	<l.d.< td=""><td>0,03</td><td><l.d.< td=""><td>0,07</td><td><l.d.< td=""><td>0,06</td><td><l.d.< td=""><td>0,07</td><td>0.01</td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<>	0,03	<l.d.< td=""><td>0,07</td><td><l.d.< td=""><td>0,06</td><td><l.d.< td=""><td>0,07</td><td>0.01</td></l.d.<></td></l.d.<></td></l.d.<>	0,07	<l.d.< td=""><td>0,06</td><td><l.d.< td=""><td>0,07</td><td>0.01</td></l.d.<></td></l.d.<>	0,06	<l.d.< td=""><td>0,07</td><td>0.01</td></l.d.<>	0,07	0.01	
o-Tolualdéhyde	<l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td>0,08</td><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td>0.02</td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<>	<l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td>0,08</td><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td>0.02</td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<>	<l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td>0,08</td><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td>0.02</td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<>	<l.d.< td=""><td><l.d.< td=""><td>0,08</td><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td>0.02</td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<>	<l.d.< td=""><td>0,08</td><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td>0.02</td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<>	0,08	<l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td>0.02</td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<>	<l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td>0.02</td></l.d.<></td></l.d.<></td></l.d.<>	<l.d.< td=""><td><l.d.< td=""><td>0.02</td></l.d.<></td></l.d.<>	<l.d.< td=""><td>0.02</td></l.d.<>	0.02	
p-Tolualdéhyde	<l.d.< td=""><td>0,02</td><td><l.d.< td=""><td>0,02</td><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td>0.02</td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<>	0,02	<l.d.< td=""><td>0,02</td><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td>0.02</td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<>	0,02	<l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td>0.02</td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<>	<l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td>0.02</td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<>	<l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td>0.02</td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<>	<l.d.< td=""><td><l.d.< td=""><td><l.d.< td=""><td>0.02</td></l.d.<></td></l.d.<></td></l.d.<>	<l.d.< td=""><td><l.d.< td=""><td>0.02</td></l.d.<></td></l.d.<>	<l.d.< td=""><td>0.02</td></l.d.<>	0.02	
Propionaldéhyde	<l.d.< td=""><td>0,41</td><td><l.d.< td=""><td>0,51</td><td><l.d.< td=""><td>0,49</td><td><l.d.< td=""><td>0,52</td><td><l.d.< td=""><td>0,50</td><td>0.17</td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<>	0,41	<l.d.< td=""><td>0,51</td><td><l.d.< td=""><td>0,49</td><td><l.d.< td=""><td>0,52</td><td><l.d.< td=""><td>0,50</td><td>0.17</td></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<>	0,51	<l.d.< td=""><td>0,49</td><td><l.d.< td=""><td>0,52</td><td><l.d.< td=""><td>0,50</td><td>0.17</td></l.d.<></td></l.d.<></td></l.d.<>	0,49	<l.d.< td=""><td>0,52</td><td><l.d.< td=""><td>0,50</td><td>0.17</td></l.d.<></td></l.d.<>	0,52	<l.d.< td=""><td>0,50</td><td>0.17</td></l.d.<>	0,50	0.17	
Valéraldéhyde	0,04	0,29	0,03	0,17	0,04	0,16	0,04	0,18	<l.d.< td=""><td>0,06</td><td>0.03</td></l.d.<>	0,06	0.03	
Concentration totale 24h	4,84	16,3	4,59	13,1	6,13	12,7	5,40	12,9	3,50	9,5	_	
Nombre échantillons	6	51	6	51	6	0	5	i9	5	9		

Hydrocarbures aromatiques polycycliques (HAP)

Données 24 heures 2014

Les résultats des analyses des hydrocarbures aromatiques polycycliques (HAP) réalisées par le laboratoire d'Environnement Canada ne sont pas disponibles.

Pour toute information concernant ces résultats, veuillez nous adresser une demande par courriel à <u>environnement@ville.montreal.qc.ca</u> en prenant soin d'indiquer <u>Demande d'information</u> – Air dans la rubrique objet.