
Appendix H: Data Analytic Application – Parking place occupancy and vehicle/pedestrian counting H-1 

 

Appendix H: 
Data Analytic Application – Parking place 
occupancy and vehicle/pedestrian 
counting 
Contents 

Abstract .......................................................................................................................................................................... 3 
1. Introduction 4 

1.1 Motivation 4 
1.3 Contributions 5 

2. Architecture and assumptions 5 
2.1 Parking detection architecture 5 
2.2 Parking detection assumptions 6 
2.3 Motion detection architecture 6 
2.4 Motion detection assumptions 7 

3. Details of the solution 7 
3.1 User interface 7 

3.1.1 User input and configuration.................................................................................................................... 7 
3.1.2 Parking detection program output ......................................................................................................... 12 
3.1.3 Motion detection program output ......................................................................................................... 13 

3.2 Parking detection image processing 15 
3.2.1 Grayscale conversion and blur ............................................................................................................... 15 
3.2.2 Histogram equalization........................................................................................................................... 15 
3.2.3 Denoising ................................................................................................................................................ 17 

3.3 Parking detection features and algorithms 18 
3.3.1 Parking polygons and groups .................................................................................................................. 19 
3.3.2 Laplacian algorithm ................................................................................................................................ 20 
3.3.3 Luminance-based algorithm ................................................................................................................... 21 
3.3.4 Combination of algorithms ..................................................................................................................... 22 
3.3.5 Defunct features ..................................................................................................................................... 23 

3.3.5.1 Manual contrast and brightness adjustment 23 
3.3.5.2 Canny edge detection 24 
3.3.5.3 Chrominance-based detection algorithm 25 

3.4 Motion detection image processing 25 
3.4.1 Difference frame .................................................................................................................................... 27 
3.4.2 Shadow mask .......................................................................................................................................... 28 
3.4.3 Dilation and thresholding ....................................................................................................................... 31 

3.5 Motion detection features and algorithms 33 
3.5.1 The ObjectContour object ...................................................................................................................... 33 
3.5.2 Perspective correction ............................................................................................................................ 34 
3.5.3 Object detection, tracking, and counting algorithms ............................................................................. 34 

3.5.3.1 Object detection 34 
3.5.3.2 Object tracking 36 
3.5.3.3 Object counting 40 

3.5.3.3.1 Vehicle counting 40 
3.5.3.3.2 Pedestrian counting 42 



Appendix H  2 
 

 
 

3.5.3.3.3 Database logging 44 
3.5.4 Dead zones ............................................................................................................................................. 44 
3.5.5 Defunct features ..................................................................................................................................... 45 

3.5.5.1 Background subtraction for motion detection 45 
3.5.5.2 Contour separation algorithm 46 
3.5.5.3 Shadow mask with CIE L*a*b*/Cie L*u*v* color space 46 
3.5.5.4 Matching contours to known shapes 47 

4. Results, comparisons, limitations 48 
4.1 Parking detection results 48 

4.1.1 Performance analysis ............................................................................................................................. 48 
4.1.2 Non-ideal conditions .............................................................................................................................. 49 
4.1.3 Comparison to other software ............................................................................................................... 51 

4.2 Motion detection results 52 
4.2.1 Consistency and accuracy analysis ......................................................................................................... 52 
4.2.2 Non-ideal conditions .............................................................................................................................. 53 

4.2.2.1 Long shadows 53 
4.2.2.2 Wind 54 

4.2.3 Comparison to other software ............................................................................................................... 55 
4.3 Software performance and detection accuracy with different resolutions and frame rates 56 

4.3.1 Resolution and frame rate sensitivity ..................................................................................................... 56 
4.3.2 Software performance and hardware required ..................................................................................... 63 

4.3.2.1 Software performance 63 
4.3.2.2 Hardware utilization 67 
4.3.2.3 Motion detection frame time analysis 70 

4.3.3 Software performance with double speed footage ............................................................................... 72 
4.4 Comparison of OpenCV and MATLAB implementation of traffic detection 73 

4.4.1 Comparison of software architecture and library functions .................................................................. 73 
4.4.1.1 Object detection 73 
4.4.1.2 Object tracking 75 
4.4.1.3 Object counting 76 

4.4.2 Comparison of software performance and ease of development ......................................................... 76 
4.4.2.1 Software performance 76 
4.4.2.2 Ease of development 77 

4.4.3 Comparison of software accuracy .......................................................................................................... 78 
4.4.3.1 Qualitative comparison of object detection 78 
4.4.3.2 Qualitative comparison of object tracking 80 

5. Conclusion 80 
5.1 Parking detection 80 

5.1.1 Camera placement suggestions .............................................................................................................. 80 
5.1.2 Objective achievement ........................................................................................................................... 82 
5.1.3 Future work ............................................................................................................................................ 82 

5.2 Motion detection 82 
5.2.1 Camera placement suggestions .............................................................................................................. 82 
5.2.2 Objective achievement ........................................................................................................................... 85 
5.2.3 Future work ............................................................................................................................................ 85 

5.2.3.1 Shadow mask improvements 85 
5.2.3.2 Feature-based detection 85 

References .................................................................................................................................................................... 87 
 

 



Appendix H  3 
 

 
 

Abstract 

Modern cities greatly benefit from monitoring of parking spot occupancy, as well as vehicle and 
pedestrian traffic, as these statistics allow the city administration to allocate taxpayer resources 
efficiently to address parking and traffic problems in the busiest areas. Parking and traffic monitoring 
currently requires limited and expensive human resources, and this project explores the possibility of 
performing this task using computer vision algorithms. The solution should provide accurate parking 
status and traffic counts (of various vehicle types and pedestrians), even in non-ideal conditions, while 
requiring as little human intervention as possible. Two programs have been developed based on well-
established algorithms using open-source library as a reference to illustrate the feasibility of integrating 
analytic applications over the deployed cameras: a parking detection program and a traffic count 
program. The parking detection program detects parking spot occupancy based on the number of edges 
and luminance level of each spot. As for the traffic count software, it uses motion detection to identify 
objects of interest (pedestrians or vehicles), tracks them across the frame, and increments a count when 
they enter or exit the frame. For the parking detection software, the objectives have mainly been 
achieved: it operates very accurately (typical accuracy of 98.2%, worst-case of 90.9%), except in some 
very difficult conditions, and requires no human intervention after an initial set up period. The traffic 
count software has partially achieved its objectives: it requires no intervention after an initial set up, and 
its consistency and accuracy are very high (almost all results except one are above 90%), but it cannot yet 
identify all classes of vehicles, and it functions worse in the presence of shadows. These findings 
demonstrate that it computer vision can provide accurate parking status, and has the potential to provide 
accurate traffic counts with some improvements to the software. 
  



Appendix H  4 
 

 
 

1. Introduction 
 

1.1 Motivation 
 
In recent years, technological advances in the field of the Internet of things have permitted the 
automated collection of parking availability and traffic count statistics. However, these systems are often 
developed for specific environments with application-specific hardware. Academic research on parking 
detection focuses on applications in parking lots [1] and often uses sensors (magnetometers and 
ultrasonic sensors) [2]. Similarly, research on traffic count focuses on motorways [3] and often features 
specific hardware, such as physical devices present on the road, various types of detectors (infra-red, 
magnetic, radar, ultrasonic) [4] and infrared cameras [5]. In the cases where video cameras are used, 
ideal camera setup conditions are present: a top-down perspective with no obstructions, relatively high-
resolution footage, and great lighting conditions, as shown in the demonstration video clips provided 
with the reference parking detection [6] and motion detection [7] programs. 
It would be very interesting to expand parking monitoring and traffic counting to city intersections, 
especially in downtown areas. This information can be used to provide parking availability and traffic 
congestion to motorists, which improves their quality of life significantly: for example, due to the large 
number of cars, it becomes increasingly difficult to find available parking spots, so many individuals who 
cannot find parking stop in illegal locations and hinder traffic. Furthermore, it is very helpful for the 
municipality to have statistics on the amount of traffic in key zones, for both pedestrians and vehicles. 
Whether the objective is to determine which areas are the most at risk for congestion, which ones 
require improved infrastructure, or to identify which parts of the city attract the most visitors, having 
accurate traffic statistics allows the municipality to allocate revenue from public investment most 
efficiently. Unfortunately, limited resources often preclude the use of application-specific hardware: only 
ordinary IP cameras are available for this project because they will be used for multiple different 
applications. Furthermore, a top-down perspective cannot be achieved due to restricted mounting 
locations (causing issues with objects obstructing others and perspective), lighting conditions will differ 
significantly with time of day, and video quality will potentially be lower if the system is implemented en 
masse. 
The goal of this project is therefore to verify the possibility of developing high reliability video analytics 
using multipurpose cameras in non-ideal camera locations. More specifically, it is to investigate whether 
computer vision can be used to achieve accurate parking status detection and gather an accurate count 
of vehicles and pedestrians in urban intersections, which are characterized by suboptimal camera 
placement and footage quality. To accomplish this, the objective is to develop software that can analyze 
a video stream of an intersection in an area of downtown Montreal and provide statistics on parking and 
traffic flow. For parking, it should detect which parking spots and illegal parking zones are occupied or 
free. For traffic detection, it should detect and distinguish pedestrians and vehicles of various classes, 
track them as they pass through the area, and count the number of each of them passing in each 
direction. Reliability should be higher than existing programs [6] [7], the software should function 
autonomously after an initial setup process to minimize the use of human resources, and provide reliable 
detection even in non-ideal weather conditions. 

1.2 Background, related works 
The platform chosen for this project is the OpenCV, an open-source computer vision library for the C++ 
programming language. It has the advantages of being free of charge, minimizing the overall 
development cost, and being feature-rich, implementing many state-of-the-art image processing 
algorithms. The parking detection software is based on the “Automatic Parking Detection” software 
developed by Github user eladj and modified by Mr. Nhat-Quang Dao [6]. This software’s intended 
function monitors a video stream of a few parking spot near a city intersection and detect if a given 



Appendix H  5 
 

 
 

parking spot is free or currently occupied by a vehicle based on the level of detail in a given area (since 
asphalt is more uniform and appears smoother than a vehicle). The aforementioned software does not 
contain any function for traffic detection, so 
 that portion of the software was developed from scratch, with inspiration from the following open-
source projects: “Motion Detection and Speed Estimation using OpenCV” by Hardik Madhu [8], “Basic 
motion detection and tracking with Python and OpenCV” by Adrian Rosebrock [9], and “Motion detection 
using a webcam, Python, OpenCV and Differential Images” by Matthias Stein [10]. The common aspect 
between these programs is that they perform object detection using motion detection, so the traffic 
detection software shall henceforth be referred to as “motion detection”. They isolate moving objects 
using a difference frame, then (optionally) apply thresholding to improve definition of moving objects, 
and find contours in the resulting frame. Another program, “Vehicle Detection, Tracking and Counting” 
by Github user andrewssobal [7] also applies these techniques for traffic counting, so it will be the 
reference software to which this project’s motion detection software will be compared. 

1.3 Contributions 
For the parking detection software, the following image processing steps were added: variable blur 
levels, histogram equalization, and noise reduction. These changes aim to improve the performance of 
the software in non-ideal conditions (at night, during rainy weather). In terms of features, the following 
were added: an option to separate each parking zone into multiple polygons to provide non-binary 
parking detection (multiple levels of parking occupancy depending on the percentage of the surface that 
is occupied), a variable edge detection threshold for each parking zone (instead of using a global one), 
and a second algorithm for detection which is luminance-based and detects if a given parking spot is free 
or occupied based on the level of light in a given area (since asphalt has a distinct luminance). 
For traffic detection, the problem was divided in three distinct parts, which can be tested and improved 
separately, but must work together in order for the software to function: motion detection, object 
tracking, and object counting. Motion detection first involves separating objects in motion from the static 
background, using similar functions to those in [8], [9], and [10]. The following features were added: a 
shadow mask to solve the problem of objects being merged together due to shadow overlap, dilation to 
improve definition of small objects, and histogram equalization. Then, a feature that discards irrelevant 
contours (corresponding to non-pedestrian, non-vehicle objects) was implemented. The next step, object 
tracking, involves linking contours on one frame to ones on the previous, allowing tracking objects in 
time, not only space. The third step, object counting, is done as follows: an algorithm determines the 
direction of motion of objects that entered or exited the frame based on where new contours appeared 
and old contours disappeared, and counts how many objects have entered or exited from each border of 
the frame (left, top, right, and bottom). The overall results are shown graphically. A frame showing only 
objects in motion is displayed, and the detected contours are outlined. The color of the outline indicates 
the results of contour tracking: it changes gradually from one color to another based on how long a given 
object has been tracked. 

2. Architecture and assumptions 
2.1 Parking detection architecture 
The structure of the parking detection software is shown in Figure 1. The user must supply a video input 
file, parking zone data (coordinates of parking zones), and a file containing various settings (for logic and 
image processing) (more details on these in section 3.1.1). The program performs image pre-processing 
on the video input to improve performance of the parking occupancy detection algorithms (one based on 
edges and one based on luminance). The outputs of these algorithms are then combined to produce the 
raw detection results, which are directly provided to the user as feedback (drawn on a video output 
frame and displayed). The results are also interpreted by an overall occupancy algorithm that filters out 
measurement noise and are then written to a database. 



Appendix H  6 
 

 
 

 
Figure 1: Parking data architecture block diagram 

2.2 Parking detection assumptions 
A few assumptions were made when developing this software, mainly regarding the user inputs. The 
video file must be of a certain level of sharpness for the edge-based detection algorithm to work 
properly: if it is too blurry, the edge detection algorithm will be unable to identify vehicle edges, and if it 
is too sharp, the algorithm could identify excessive contours on the asphalt (though this can be remedied 
with blur and noise reduction). Also, the camera inclination must be as low as possible: ideally, it would 
be pointed straight down, and software performance will degrade as it is tilted higher and higher (due to 
tall vehicles covering adjacent spots). The vacant parking spots should also be as clean as possible: any 
large debris, or marks or cracks on the pavement could be detected as edges and will reduce the 
probability of accurate detection. Finally, the luminance algorithm functions best with even lighting, so 
there are issues at night, when the sources of light (lamps) are scattered and lighting is uneven. For the 
parking zone data, the assumption is that the user has set the regions properly (see section 3.1.1 for 
more details): each region should be entirely covered by a polygon, and edges are specified in the correct 
order (clockwise, starting at top left). For the settings file, it is assumed that the user will provide rational 
values for each setting, following the guidelines and keeping every value within the same order of 
magnitude. Although there are checks for invalid values (such as negative numbers where a positive one 
is required), the program will run an irrational value, but provide nonsensical results. 

2.3 Motion detection architecture 

 
Figure 2: Motion detection architecture block diagram 



Appendix H  7 
 

 
 

The structure of the motion detection software is shown in Figure 2 below. The user must supply a video 
input file, entrance/exit zone data (coordinates of entrance/exit zones), and the aforementioned settings 
file. The program performs image pre-processing on the video input to isolate moving objects and make 
them easier to identify. It outputs two different frames: one for vehicles and one for pedestrians, with 
different parameters for each, to optimize detection for each case. Then, an object detection algorithm 
detects contours of objects in the frame, and a contour matching algorithm allows tracking a given object 
by linking its contours between frames. For counting, a new/deleted contour identification algorithm 
identifies contours that have possibly entered or exited the frame and marks the entering/exiting 
locations, and a new/deleted contour confirmation algorithm confirms that the contours have indeed 
entered/exited the frame and generates the appropriate counts. The count results are combined with 
image pre-processing results and are displayed as video output to the user. They are also written to a 
database: some data is written immediately, other, periodically through a gate status algorithm. 

2.4 Motion detection assumptions 

For the motion detection algorithm, the requirements on the video file are the following. The camera 
inclination is critical: if it is tilted too high, or with the wrong perspective (for example, oblique instead of 
isometric on a multi-lane road), it will lead to a very significant error in the count, both in consistency and 
accuracy, as vehicles in one lane will obscure those in lanes behind them. For optimal camera 
placements, see section 5.2.1. Otherwise, scene lighting and sharpness are not as critical as with parking 
detection (see section 2.2) because the algorithm is based on motion, so changes in these parameters 
will not affect the difference frame. However, one key aspect of lighting that cannot be ignored is the 
presence of shadows: if they are large enough to cause nearby objects contours to overlap, precise 
tuning of the shadow mask (see section 3.4.2) will be needed to improve detection results, but they will 
never reach the consistency and accuracy of a scene without large shadows. For the entrance/exit zone 
data file, very precise tuning is not required, but a certain amount of experience is necessary for setting 
the boundaries properly. If they are not properly defined, it could lead to vehicles being missed or 
counted twice when they stop at an intersection, so some testing may be required to minimize the 
occurrence of these events. Finally, the motion detection settings are much trickier to define than the 
parking detection settings. The most difficult ones to calibrate are the perspective and shadow mask 
parameters, and although a visual feedback is provided to the user (see section 3.1.3), it is not trivial to 
determine which parameter should be tuned next. Even worse, the errors caused by an incorrect 
configuration of these parameters may be very subtle, so a decent understanding of the impact of each 
setting, as well as extensive testing, will be needed for optimal software performance. 

3. Details of the solution 
3.1 User interface 
3.1.1 User input and configuration 
The program requires a few launch parameters to function, which can be passed via the command line 
using the following syntax: 
 
./smart-city <Video filename> <Parking data filename> <Gate data filename> 
<Settings filename> 
 
<Video file name> refers to the video stream to be analyzed, which can be either the path of a video 
file (recording) or a camera URL livestream). <Parking data file name> is a file containing 
information about the parking zones for parking detection. <Gate data file name> is a file 
containing information about the designated entrance and exit zones for motion detection. 
<Settings filename> corresponds to a file containing different numerical parameters that influence 
image processing or the functioning of parking or motion detection algorithms. Note that configuring the 
parking data file and gate data file requires finding coordinates of a point in the frame. There exists a 



Appendix H  8 
 

 
 

feature to simplify this task: the user must simply position the mouse at the desired point in the frame 
labeled “Video” and perform a left-click; the coordinates should appear in the console. 
The parking data text file describes the parking zone, each on a separate line. The line contains an ID 
value (numerical value which will be used to label the parking spot on the output), followed by a type 
value (0 if the parking zone is a valid parking spot and 1 if it is an illegal zone to be monitored for 
violations). Then, there are the boundaries which are specified using a set of four (x,y) coordinates of the 
quadrilateral that defines the parking spot, where the (0,0) point corresponds to the upper left corner of 
the frame. The points must be specified in a clockwise order, starting from the top left corner. For 
optimal performance, the quadrilateral should cover the entire parking spot, but not parking spot 
markings such as lines. Finally, there is a threshold value for the minimum amount of detail that needs to 
be present in a parking spot for it to be considered as occupied. This value is unique to each parking spot 
and must be determined empirically. A value indicating the amount of detail detected in each parking 
polygon is provided in the console at each frame, so one must take note of different values when the 
parking spot is free and occupied, in different environmental conditions, then select a value that is higher 
than most or all recorded values when the spot is free, and lower than most or all recorded values when 
the spot is occupied. For example, the parking spot in Figure 3 with coordinates at (420, 120), (470, 107), 
(442, 147), and (382, 163) and a threshold value of 5.0 would be specified by the following line: 
 

0 1 420 120 470 107 442 147 382 163 5.0 
 

 
Figure 3: Parking spot defined by above line 

The first part of the gate data text file, under the “Gates” label, describes each designated entrance and 
exit zone, each on a separate line, similarly to the parking data file. Each line starts with an ID value, but 
unlike the parking file, it is not arbitrary: “0” signifies “left”, “1” signifies “top”, “2” signifies “right”, and 
“3” signifies “bottom”. The next digit, the type, determines what the gate represents: “0” signifies a 
vehicle entrance, “1” signifies a vehicle exit, “2” signifies a pedestrian entrance, and “3” signifies a 
pedestrian exit. The next four numbers are the coordinates, but since gates are rectangular, only four 
numbers are needed, supplied in the following order: top corner x-coordinate, top-corner y-coordinate, 
width, height. For example, the left vehicle entrance in Figure 4 with top left corner at (0, 60) and bottom 
right one at (400, 350) (length: 400, width: 290) is defined as: 
 

0 0 0 60 400 290 
 



Appendix H  9 
 

 
 

 
Figure 4: Vehicle entrance defined by above line 

The next part of the gate data file, under the “Dead zones” label, allows the user to set dead zones where 
no motion detection can occur. The main purpose of dead zones is to be placed between gates and edges 
of the frame, to ensure that vehicle count still works with gates placed away from edges of the frame (for 
more details, see section 3.5.4). Deadzones are declared similarly to gates, but do not have an ID value 
(only the type, the top corner coordinates, and the dimensions).  
The following image (Figure 5) shows examples of a parking data text file and a gate data text file: 

 

 

 

 
Figure 5: Parking data text file (left) and gate data text file (right) 

The “settings” file is another text file where every pair of lines is the description of a setting and, below, 
its value. Settings are parameters that are necessary to be adjustable by the user without having to 
obtain and modify the program’s source code, so they are parsed from the file instead of being 
hardcoded. Some parameters are only for user convenience and do not affect the algorithm, such as the 
time interval between logging events to a file. Others, such as the number of polygons per parking spot, 
type of parking detection algorithm used, and perspective correction for object size do have a positive or 
negative effect on the reliability of the program, but it is immediately visible and easy to understand. 
Finally, most of the image processing parameters are for advanced users only. The default values are 
adequate, so modifying them is not critical, but an advanced user could tweak them to improve 
performance. The following table (Table 1) shows the categorized settings and their description: 
Table 1: Parking and motion detection settings, categorized 

Setting (section) Description Value range and typical value 

Frame dimensions Frame width and height in pixels Integer value > 0 
1280 
720 

Parking detection image processing settings 

Thickness of 
boundary of zone 

How many pixels thick is the border of the area 
around each parking zone that is denoised, 

Integer value > 0 
10 



Appendix H  10 
 

 
 

for denoising (3.2.3) higher: more accurate denoising but slower 

Blur level (3.2.1) How much blur should be applied to the frame 
in pre-processing for parking detection, higher: 

more blur 

Floating-point value >= 0 
0.0 

Denoising amount 
(3.2.3) 

How strong the denoising operation should be, 
higher: more noise removal, lower: preserve 

more detail 

Floating-point value > 0 
4.5 

Clipping limit for 
contrast adjustment 
for edge detection 

(3.2.2) 

How intense histogram equalization can be for 
edge detection, higher: more contrast, lower: 

less noise 

Floating-point value > 0 
3.0 

Clipping limit for 
contrast adjustment 
for luma detection 

(3.2.2) 

How intense histogram equalization can be for 
luma detection, higher: more contrast, lower: 

less noise 

Floating-point value > 0 
2.5 

Upper and lower 
limit of luminance of 

pavement (3.3.3) 

Thresholds for detecting a vehicle based on 
luminance, upper limit: sensitivity to highlights, 

lower limit: sensitivity to shadows 

255 >= Integer value >= 0 
200 
45 

Parking detection logic parameters 

Number of regions 
per parking zone 

(3.3.1) 

Number of regions in which each parking spot is 
split, higher: more possible intermediate 

occupancy states (1: 2, 2:3, or 4:5) 

Either 1, 2, or 4 
4 

Parking detection 
algorithm (3.3.2, 

3.3.3, 3.3.4) 

Parking detection algorithm used (1: Laplacian, 
2: luminance, 3: both) 

Either 1, 2, or 3 
3 

Parking status 
update interval 

(3.3.1) 

Time between each parking status update, 
higher: faster but more error-prone response, 

lower: slower but more accurate response 

Floating-point value > 0 
10 

Opening and closing 
time of the parking 

lot 

Times between which parking is globally 
disallowed (all spots marked as unavailable) 

Hours in 24-hour format 
9 

21 

Motion detection image processing parameters 

Blur level (3.4.1) How much blur should be applied to the frame 
in pre-processing for motion detection, higher: 

more blur 

Floating-point value >= 0 
1.0 

White threshold 
(large contours, top 

& bottom part) 
(3.4.3) 

Threshold for difference frame pixels to be cast 
to white in thresholding operation for large 
contours (vehicles), lower: more sensitive to 

motion, different values for top & bottom part 
of frame  

255 >= Integer value >=0 
6 
8 

Dilation kernel size 
(large contours, 

bottom & top part) 
(3.4.3) 

Size of dilation kernel for large contours 
(vehicles), higher: more chance of grouping 

contours together, different values for top & 
bottom part of frame 

Integer value >= 1 
7 

11 

White threshold 
(small contours) 

(3.4.3) 

Threshold for difference frame pixels to be cast 
to white in thresholding operation for small 

contours (pedestrians), lower: more sensitive to 

255 >= Integer value >= 0 
10 



Appendix H  11 
 

 
 

motion 

Dilation kernel size 
(small contours) 

(3.4.3) 

Size of dilation kernel for small contours 
(pedestrians), higher: more chance of grouping 

contours together 

Integer value >= 1 
15 

Shadow mask 
threshold for hue 

(3.4.2) 

Upper threshold for angular difference between 
foreground and background hue to consider 

foreground as shadow 

180 >= Integer value >= 0 
70 

Shadow mask 
thresholds for 

saturation (3.4.2) 

Upper and lower thresholds for absolute 
difference between foreground and background 

saturation to consider foreground as shadow 

255 >= Integer value >= 0 
70 
10 

Shadow mask 
thresholds for value 

(3.4.2) 

Upper and lower thresholds for ratio between 
foreground and background value to consider 

foreground as shadow 

1>= Floating-point value >= 0 
0.5 

0.12 

Vertical coordinate 
for top/bottom 

frame separation 
(3.4.3) 

Vertical coordinate separating the top and 
bottom of frame for different image processing 

values above 

Integer value >= 0 
240 

Motion detection logic parameters 

Gain for area 
calculations (large 
contours) (3.5.2) 

Scaling factor for minimum size contour that is 
considered as a vehicle, considering perspective, 

higher: less tolerance for small contours 

Floating-point value > 0 
0.02 

Gain for distance 
calculations (large 
contours) (3.5.2) 

Scaling factor for maximum distance between 
vehicle contour centroids to link them between 
frames, considering perspective, higher: more 

tolerance for fast-moving contours 

Floating-point value > 0 
0.2 

Gain for area 
calculations (small 
contours) (3.5.2) 

Scaling factor for minimum and maximum size 
contour that is considered as a pedestrian, 

considering perspective, higher: less tolerance 
for small contours, more for large ones 

Floating-point value > 0 
0.005 

Gain for distance 
calculations (small 
contours) (3.5.2) 

Scaling factor for maximum distance between 
pedestrian contour centroids to link them 
between frames, considering perspective, 

higher: more tolerance for fast-moving contours 

Floating-point value > 0 
0.02 

Horizontal and 
vertical perspective 
multipliers (3.5.2) 

Multipliers applied to horizontal and vertical 
distances from the origin, higher: increase effect 

of relevant dimension for perspective 
compensation 

Floating-point value > 0 
0.25 
1.45 

Horizontal and 
vertical perspective 

origin multipliers 
(3.5.2) 

Fractions of frame width and height where 
origin located, higher: origin moves towards 

right/bottom (respectively) 

1 >= Floating-point value >= 0 
0.3 
1 

Offset for 
perspective (3.5.2) 

Value of perspective correction calculation for 
object located exactly at camera origin 

Integer value, minimum: 
distance between origin and 

farthest point on frame, taking 
into account multipliers 

1600 (for 1280x720) 

Traffic status update Time between each traffic status update, higher: Floating-point value > 0 



Appendix H  12 
 

 
 

interval (3.5.3.3.3) faster updates 10 

3.1.2 Parking detection program output 

 
Figure 6: Parking detection user interface (output frame) 

 
Figure 7: Parking detection log file 

The parking detection software presents the user with a window displaying the current frame of the 
stream being analyzed, with an overlay of the defined parking zones and their associated ID in the center. 
They are split into 1, 2, or 4 sub-zones depending on user configuration (see section 3.3.1). Each 
individual sub-zone is highlighted green if detected as free and red if occupied (this status updates in real-
time and provides visual feedback). Each zone also has a letter near its ID value that corresponds to the 
overall zone’s occupancy status: “U” for unoccupied, and “O” for occupied (this status updates at regular 



Appendix H  13 
 

 
 

time intervals to avoid multiple toggles causing noise). Figure 6 demonstrates the output of the parking 
detection software. 
The parking detection program also logs any changes in parking state of a given zone to a text file, along 
with a timestamp (time & date). This is a precursor to writing a full function that writes to a database. A 
parking zone will only be considered as available when its occupancy reaches 75% or above, and 
unavailable when the percentage drops to 25% or below. The type of the parking zone also influences the 
message that will be logged in the database: for a parking spot, it would be “Parking spot n became 
available/unavailable”, and for an illegal zone, it would be “Illegal parking area became free/blocked”, 
depending the value of occupancy. Figure 7 shows an example of the parking data log: 
3.1.3 Motion detection program output 

 
Figure 8: Motion detection user interface (original frame, shadow mask and perspective correction) 

The motion detection program presents the user with two types of windows: the original frame, and 
difference frames (one for vehicle and one for pedestrians). The original frame is almost identical to the 
frame captured by the camera, but includes an overlay of the shadow mask in purple (see section 3.4.2), 
and an overlay of the perspective verification rectangles in green (see section 3.5.2). The above features 
are only for verifying the validity of shadow mask threshold and perspective compensation parameters 
and can be disabled in the settings. The difference frame shows the program’s interpretation of the video 
stream and provides visual feedback of detected and identified objects to the user so they can tweak 
settings until the program performs optimally. There is one difference frame for vehicles and one for 
pedestrians to avoid excessive clutter. Each final difference frame is generated by taking the original 
difference frame (after dilation operations, see section 3.4.3), and overlaying the contours of detected 
objects (derived from the threshold frame, see section 3.4.3), as well as the boundaries of the designated 
entrance/exit zones and dead zones (see section 3.1.1). The object contours outlines are colored using a 
color gradient (from red to yellow to green) depending on the lifetime of the contour (vehicles: red for a 
lifetime of 0 to green for a lifetime of 5+, pedestrians: red for a life time of 0 to green for a lifetime of 
13+). Furthermore, the ID of each contour is to help the user determine if a given object is being tracked 
properly across the frame. As for the designated zones, the entrance zones are yellow, the exit zones are 
blue, and the combined entrance/exit zones are white. The following images show examples of an 



Appendix H  14 
 

 
 

original frame with the shadow mask and perspective correction enabled (Figure 8), and a difference 
frame (Figure 9) from the same moment: 

 

 
Figure 9: Motion detection user interface (difference frame showing detected vehicles and designated 

entrance/exit zones, as well as dead zones.) 

The motion detection software also records two types of events to a log file, a precursor to writing this 
data to a database. Any time a pedestrian or vehicle exits the frame, its point of origin (if possible) and 
point of exit are recorded, in order to track not only how many vehicles enter and exit, but also the 
trajectory they follow. Furthermore, at regular, user-defined intervals, the status of all designated 
entrance/exit zones (i.e. number of vehicles that passed through each) is written to a log file. The 
following image (Figure 10) shows an example of the motion detection log file: 

 
Figure 10: Motion detection log file 



Appendix H  15 
 

 
 

3.2 Parking detection image processing 
The parking detection image processing pipeline algorithm is shown in Figure 11 below. It consists of 
three main steps: grayscale conversion/blur, histogram equalization, and denoising (noise reduction), 
which are outlined in sections 3.2.1, 3.2.2, and 3.1.3 below. 

 
Figure 11: Parking detection image processing pipeline 

3.2.1 Grayscale conversion and blur 
The detection algorithm is based on edge detection. The premise is that an empty parking zone will have 
fairly uniform color due to the asphalt surface, while an occupied one will feature more edges due to the 
various features of the vehicle that occupies it. During each program loop, a frame is captured. The frame 
must undergo some pre-processing before it is ready to be analyzed. First, the frame is converted from 
color to grayscale using Formula 1, which determines each pixel’s luminosity based on the red, green, and 
blue channels [11]:  
  𝑌 ← 0.299 ∙ 𝑅 + 0.587 ∙ 𝐺 + 0.114 ∙ 𝐵 (1) 
After that, the image is blurred to eliminate excessive details that would manifest themselves as noise in 
the algorithm. The Gaussian blur function performs the convolution of the original image with the 
specified kernel [12], which was chosen to be a 5x5 rectangle so that the value of each blurred pixel 
depends on a sufficient, but not excessive number of nearby samples. The other parameters are the 
standard deviation values (sigmaX and sigmaY), which are used to compute the weights of the other 
pixels using a Gaussian distribution curve. In other words, each pixel’s value is replaced with a weighted 
average of the surrounding 5x5 grid of pixels, with the weight of each pixel being lower the farther it is 
from the original one. The standard deviation can be configured by the user in the settings file (the lower 
it is, the less blur, and a value of 0 disables blur completely). Generally, the best detection is achieved at a 
blur level of 0, but if the image is very sharp and there are excessive details detected on asphalt, the blur 
level can be increased. 
3.2.2 Histogram equalization 
In order to make the luminance-based detection algorithm function at night, it was necessary to make 
the brightness and contrast of the image uniform regardless of ambient light levels. This is achieved 
through histogram equalization. This procedure takes the histogram of the brightness of pixels in the 
image (a representation of how many pixels there are at each brightness level) and transforms it so that 
it occupies the whole brightness spectrum (i.e. the darkest pixels have the lowest possible brightness 
value for the specified color space and the brightest ones, the highest possible value) [13]. The specific 
implementation of histogram equalization used is the contrast limited adaptive histogram equalization, 
called cv::CLAHE in OpenCV [13]. This technique is superior to simple histogram equalization due to its 
adaptive nature: it only performs histogram equalization over small blocks of pixels (8x8 by default) [13]. 
This should solve the problem of bright areas becoming overly bright and dark areas becoming overly 
dark, which happens in ordinary histogram equalization where the contrast of the whole image is 
considered and results in loss of detail [13]. It also supports contrast limiting, which clips the contrast 
adjustment to a maximum specified clip limit and redistributes any excess uniformly across the histogram 
(i.e. to all pixels) [14]. For a more technical description of histogram equalization with contrast limiting, 



Appendix H  16 
 

 
 

see [14]. This feature was used to specify different contrast limits for the edge-based and luminance-
based algorithms so that each performs optimally. The benefits of contrast limited adaptive histogram 
equalization can be seen from the following images: 

 

 
Figure 12: Night view without contrast-limited adaptive histogram equalization 

 
Figure 13: Night view with contrast-limited adaptive histogram equalization 

In Figure 12, where CLAHE was not applied, areas of the image that are not under direct illumination by a 
street lamp are very dark and uniform, making it very difficult to detect edges. Even a person may have 
difficulty determining the state of a parking spot at a glance, so the task is almost impossible for the type 



Appendix H  17 
 

 
 

of algorithm in use in this project. However, in Figure 13, the contrast of the image is significantly 
improved, almost to the point of resembling a daytime image. 
3.2.3 Denoising 
Another instance where obtaining reliable parking detection was difficult was during or after rain. 
Indeed, the image texture of the asphalt changes significantly when it is wet (the number of edges 
detected increases), leading to difficulties with the use of a fixed edge threshold parameter. A possible 
solution is blurring the image, but this technique affects relevant details in the image and makes 
detection more difficult. Instead, since the texture of the wet asphalt resembles random image noise, a 
noise reduction algorithm would be more appropriate. The fast non-local means denoising algorithm 
provided by OpenCV was used [15]. This algorithm analyzes the image to find regions that are similar, 
then replaces the pixels in each region by the average of the pixels of all the region, which works 
particularly well because noise is typically random [15]. For a more technical description of this 
algorithm, see [16]. The amount of denoising applied is controlled by a parameter in the settings file. 
Unfortunately, this operation is very slow. Before applying this operation, the frame processing time 
(average during a short clip) was approximately 86.02 ms (leading to a frame rate of 11.63 FPS), which is 
more than sufficient for this application). Once denoising was applied, the frame processing time 
increased to 382.53 ms (2.61 FPS). Although this does not impact the parking detection application 
(which is not extremely time-sensitive), it is very unpleasant to watch and could preclude future 
applications such as counting that require a higher frame rate. Therefore, the algorithm was optimized to 
only affecting parking zones (and a small user-defined exterior border around them). After applying this 
optimization, the frame processing time was reduced to 197.58 ms (5.06 FPS). When considering only the 
time taken for the denoising algorithm (296.51 ms without optimization, 111.56 ms with optimization), 
this is a 2.66-fold improvement. The following images show the effect of the denoising operation, as well 
as an example of the other solution, blur. The effect has been exaggerated for clarity, but the principle is 
the same. 

 
Figure 14: No noise removal effect 

Figure 15: Fast non-local means denoising applied to whole image 



Appendix H  18 
 

 
 

 
Figure 16: Blur applied to whole image 

Figure 17: Fast non-local means denoising applied to part of image (circled areas) 

Figure 14 shows the problem that had to be solved: the texture of the wet asphalt when it rains does not 
appear smooth on the camera feed. 

Figure 15 shows the application of the denoising algorithm: even though the texture of the asphalt has 
been significantly smoothed, the details on the surrounding vehicles are still clearly visible. Figure 16 
shows the application of blur, which produces a poor effect: it is not as effective at removing the details 
on the asphalt, but a significant part of the details on the vehicles is lost. Finally, 

Figure 17shows the results of applying denoising only on the regions of interest. 

3.3 Parking detection features and algorithms 



Appendix H  19 
 

 
 

3.3.1 Parking polygons and groups 
The main challenge parking detection poses concerns the camera’s perspective view of the parking spots, 
which makes it difficult to determine the state of a parking spot. Indeed, part of the car will block the 
parking spot behind it, and it is also marked as occupied, whereas it is in fact free. The solution that was 
implemented allows the user to define multiple polygons per parking spot: 1, 2, or 4. This was done by 
modifying the zone initialization function found in utils.cpp. The main change was assigning 1, 2, or 4 
polygons per parking spot defined by the user, by partitioning the area down the middle horizontally or 
vertically wherever appropriate. 
Each polygon is treated individually by the parking algorithm and assigned a value of 1 (occupied) or 0 
(free). However, the end goal is to obtain a single occupancy state for a given parking spot (occupied or 
unoccupied) that can be provided to the user. This is achieved by introducing a new class ParkingGroup 
which groups the polygons that belong to a given parking spot (it essentially holds a vector of parking 
polygons).  
The ParkingGroup class features the following methods:  

 void addParking(Parking &park) to add parking polygons to a given parking spot 

 Parking *getParking(int i) to retrieve a particular parking polygons (specifically a pointer to it) 

 int getSize(void) to retrieve the number of parking polygons in a parking spot 

 vector<cv::Point> getPoints(void) to retrieve the coordinates of the parking spot itself 

 cv::Point getCenterPoint(void) to retrieve the coordinates of the center point of the parking spot 
itself 

 int getOccupancy(void) to determine the occupancy of a parking spot as a percentage of parking 
polygons that are free 

For one polygon, the occupancy percentage is still a binary case (either 0% or 100%), but two polygons  
allows 0%, 50%, or 100% occupancy, and four polygons is the best with 0%, 25%, 50%, 75%, or 100% 
occupancy. The main advantage of this method is that it allows filtering out actual changes in parking 
from simple noise in the reported delta value that causes a parking spot to change state momentarily. 
The actual status of a given parking spot is only checked when a user-defined number of seconds has 
passed.  
For a comparison of the results obtained with 1, 2, and 4 zones, see the image below: 

   
Figure 18: Comparison of parking detection performance with 1, 2, and 4 zones 

From Figure 18 above, it is evident that the single polygon per parking zone approach is not optimal in 
this scenario, and that two and four polygons provide a much better result. Indeed, consider parking zone 
1, which is not occupied, but partially covered by the large vehicle in zone 6. The one polygon approach 
marks it as occupied, which is completely wrong. The two polygon marks it as 50% free (1/2 free 
polygons), an indeterminate state, which is preferable to making the wrong decision. Finally, the four 
polygon approach marks it as 75% free (3/4 free polygons), which can be interpreted as free, since the 
occupancy percentage is below 50%. 



Appendix H  20 
 

 
 

 
Figure 19: Parking detection overall occupancy algorithm 

Furthermore, the fact that a parking spot can have up to 5 states (with four polygons) allows a more 
accurate checking of transitions. Indeed, an algorithm was devised where a parking spot will only 
transition to “free” when its occupancy percentage exceeds 50% (more than half the polygons are free), 
and “occupied” when its occupancy percentage falls below 50% (less than half the polygons are free). If 
the percentage hits exactly 50% (half the polygons), a change of state will not occur. This is a very noise-
robust and accurate method for checking of parking spot status (it inspired by the concept of rising and 
falling edges in digital signals). This algorithm is the basis for writing parking status to the database, as it 
is advantageous to remove frequent toggling due to noise prior to logging events. It is outlined in Figure 
19. 
3.3.2 Laplacian algorithm 
After the image processing techniques (see section 3.2) have been applied, the frame is ready to be 
analyzed for edge detection. This is done mainly through the Laplacian operator (OpenCV function 
cv::Laplacian). The overall algorithm is shown the following image (Figure 20). For each parking spot, 
the part of the frame bounded by the parking zone quadrilateral is isolated, generating a region of 
interest. Then, a Laplacian operator is applied to the ROI. This operator produces an image of the same 
size as the original one, where each pixel’s value is the double derivative of the original pixel (in both 

dimensions since images are 2D): 
𝜕2𝑓

𝜕𝑥2
+
𝜕2𝑓

𝜕𝑦2
 [17]. This implements edge detection because on edge 

transitions, the concavity of the original function of pixels changes, therefore there is a 
maximum/minimum in the first derivative, and a zero in the second derivative [17]. The overall result is 
an image where the uniform surfaces are dark and the edges (transitions between surfaces) are bright, as 
seen in the example in [17]. The mean value of the pixels in the resulting region is then calculated, 
yielding a number that is higher the more edges there are in the image. Then, for each parking spot, the 
mean value is compared to the detection threshold and the result is assigned to a status variable for each 
parking spot, which is 0 if the average is bigger or equal to the threshold (parking spot occupied) and 1 if 
it is below the threshold (parking spot free). There is a unique threshold value for each parking spot 
instead of a global value because that would only be adequate if all parking spots were more or less 
uniform. However, in this case, the condition of the road and, more importantly, the typical orientation 
of a vehicle are different from spot to spot, which leads to a vast difference in reported Laplacian value 
between spots even if they have the same state. Adding a different threshold for a given parking spot is 



Appendix H  21 
 

 
 

the ideal solution for this issue. Although this seems less user-friendly, as the user has to enter a specific 
value for each spot, it is in fact less tedious than trying to find a global one-size-fits-all value in most 
cases. In fact, detection will be reasonably accurate when using the same value for most spots, and 
setting a different one for a few problematic ones, so the amount of set up time is not excessive. Figure 
21 shows the performance of the Laplacian algorithm. 

 
Figure 20: Laplacian detection algorithm 

 
Figure 21: Performance of edge-based detection algorithm only 

3.3.3 Luminance-based algorithm 

 
Figure 22: Luminance detection algorithm 

 
The next main challenge was improving parking detection in non-ideal conditions. The edge-based 
algorithm still suffers at detecting objects in regions where there are a lot of highlights and shadows, due 



Appendix H  22 
 

 
 

to the relative uniformity of pixels in these areas. Therefore, a second algorithm, which is based on 
luminance, was implemented. It is shown in Figure 22 below. The algorithm works by calculating the 
average luma (Y) value in a given region, which is very simple because the image is converted to 
grayscale, so the Y value is available explicitly (see section 3.2.1). This value is then compared to an upper 
threshold and lower threshold, and if it is above or below the nominal range of values, the spot is marked 
as occupied. This works because asphalt is grey, so it is roughly in the middle of the luminance spectrum. 
A very bright region corresponds to a white/pale vehicle occupying a spot, and a very dark one indicates a 
black vehicle or the shadow under the wheels of a vehicle. Figure 23 shows the performance of the 
luminance algorithm. 

 
Figure 23: Performance of luminance-based detection algorithm only 

3.3.4 Combination of algorithms 



Appendix H  23 
 

 
 

 
Figure 24: Performance of both algorithms combined 

Each algorithm (Laplacian and luminance) applied individually result in a less than optimal detection. The 
edge-based algorithm does not provide reliable detection in highlights and shadows due to the lack of 
visibility of edges, and the luminance-based one is simply not systematic enough in detecting a vehicle 
(not every occupied parking spot will be overly bright or dark!) However, combining both algorithms 
results in a much more accurate detection, where the edge-based algorithm does most of the work, and 
the luminance-based one helps in cases where the edge algorithm performs poorly. The combination is 
done using the logical AND function: both algorithms must signal that a parking spot is free (1) for it to be 
considered free; if either algorithm marks it as occupied (0), it is automatically considered occupied. For a 
comparison of the performance of each algorithm and both algorithms combined, see Figure 21 and 
Figure 23 above, as well as Figure 24. 
Notice the poor performance of edge-based parking detection in zones 4 and 6 (excessive shadows) and 
zone 5 (excessive highlights) (Figure 21), how the luminance-based parking detection algorithm detects 
those cases in particular (Figure 23), and how the combination of both algorithms produces the most 
accurate parking detection (Figure 24). 
3.3.5 Defunct features 
3.3.5.1 Manual contrast and brightness adjustment 
In the early stages of developing the parking detection software, there was a necessity of modifying the 
contrast and brightness of the image to extract more detail from the highlights and shadows of the 
image. Before histogram equalization was discovered and explored, there was a method of adjusting the 
image contrast and brightness via user-defined values. Through research, it was found that the contrast is 
analogous to linear gain (factor by which each pixel’s value is multiplied), and the brightness is a bias 
value (constant value by which each pixel’s value is increased after contrast is applied) [18]. In short, if 
the image is represented by a function 𝑓(𝑖, 𝑗) where 𝑖 and 𝑗 are the pixel coordinates, then adjusting 
contrast (α) and brightness (β) generates a new image 𝑔(𝑖, 𝑗) computed as follows: 𝑔(𝑖, 𝑗) =  α ∙ 𝑓(𝑖, 𝑗) +
β [18]. However, this method was very difficult to fine-tune, due to the fact that two parameters must be 
adjusted simultaneously. Furthermore, it was not universal enough: the same parameters did not work 
for different times of day, since the base contrast and brightness of the image change based on ambient 



Appendix H  24 
 

 
 

light (typically both are lower by night). An algorithm that varies the contrast and brightness parameters 
during program execution would then have to be implemented. This would be extremely unwieldy, so 
research was done on alternative methods of achieving the goal of extracting more detail from the 
image. This led to the finding of histogram equalization (CLAHE, see section 3.2.2), which is much easier 
to use (only requires adjusting the contrast limit) and is much more effective than anything that could be 
programmed from scratch given the limited time, resources, and knowledge of image processing 
available. 
3.3.5.2 Canny edge detection 
Before different edge detection thresholds for each parking spot were used (see section 3.3.1), the 
implementation of a reliable edge-based detection that would work with a single parameter was 
attempted. Research in this area led to the finding of the Canny edge detector developed by John F. 
Canny in 1986 and implemented as the function cv::Canny in OpenCV [19]. This algorithm has several 
steps, which allows it to improve on rudimentary edge detection techniques (such as the Laplacian, see 
section 3.3.2) in three key areas: it achieves a low error rate (only detect actual edges), good localization 
(a small distance between detected and actual edges), and minimal response (only detecting each edge 
once) [19]. The steps are as follows [19]: 

1. Filter out noise using a Gaussian blur filter, where each pixel’s value is replaced by the average of 
the values of the surrounding pixels weighted using a Gaussian distribution in the x and y 
directions, a typical kernel is described by Formula 2: 

 
1

159
∙

(

 
 

2 4
4 9

5
12

4 2
9 4

5 12 15 12 5
4 9
2 4

12
5

9 4
4 2 )

 
 

 (2) 

2. Find the gradient of the image by applying kernels similar to those in Formula 3 (in the x and y 
directions) to each pixel: 

 𝐺𝑥 = (
−1 0 1
−2 0 2
−1 0 1

) , 𝐺𝑦  = (
−1 −2 −1
0 0 0
1 2 1

) (3) 

Then, the norm (L1: |𝐺𝑥| + |𝐺𝑦| or L2: √𝐺𝑥
2 + 𝐺𝑦

2) and direction are computed for each pixel. This 

is done by the Sobel operator (cv::Sobel function with kernel size 3 in OpenCV) [12], which is also 
used by the Laplacian function [17]. 

3. Remove pixels that are not considered to be part of an edge, leaving only thin lines. 
4. Apply hysteresis with an upper and lower threshold: any gradient above the upper threshold is a 

valid edge, any gradient below the lower threshold is not an edge and is rejected, any gradient 
between the two thresholds is only considered a valid edge if it is adjacent to a gradient above 
the upper threshold. 

The Canny edge detector is obviously more capable than the Laplacian method: it has two additional 
steps (3 and 4) to improve reliability of edge detection. Nevertheless, after attempts to implement it, it 
was not used and the original Laplacian was kept. Indeed, the results were not as good as expected. First, 
the algorithm integrates the Gaussian blur, and the blur parameters cannot be modified (the cv::Canny 
function only takes as parameters the upper and lower thresholds, the Sobel kernel size, and a parameter 
indicating whether the L1 or L2 norm should be used). Since it was found that adding Gaussian blur is 
counterproductive in this project due to the already blurry video stream (see section 3.2.1), the Canny 
algorithm was not optimal. Furthermore, it was difficult to set the two thresholds to produce a good 
result, despite the recommendation to keep the upper/lower ratio between 2 and 3 [19]: either too few 
edges were detected, or too many. It became obvious that a variable edge threshold would need to be 



Appendix H  25 
 

 
 

set for each parking spot, and once this feature was implemented, the Laplacian function worked well 
enough. It was then decided the Canny algorithm was not necessary and the Laplacian remained. 
3.3.5.3 Chrominance-based detection algorithm 
After the weaknesses of the edge-based detection algorithm became known (it completely failed in very 
bright or dark areas), it was obvious that a second detection algorithm would be needed to complement 
it. Before the luminance-based algorithm was implemented (see section 3.3.3), the possibility of 
implementing an algorithm based on the YUV color space (also called YCbCr) was investigated. Instead of 
encoding a pixel value as three values from 0 to 255 representing the amount of red, green, and blue 
(RGB color space), it represents it as a combination of luminance (Y) and chrominance (Cb and Cr). To 
convert from RGB to YUV, the luminance is obtained using Formula 1 (section 3.2.1), and Cr and Cb are 
obtained using Formula 4 and Formula 5, respectively [11]: 
 𝐶𝑟 ← (𝑅 − 𝑌) ∙ 0.713 + 128 (4) 
 𝐶𝑏 ← (𝐵 − 𝑌) ∙ 0.564 + 128 (5) 
From these equations, the luminance is the same as the pixel value for the grayscale image, while the 
two chrominance channels represent the excess of red and blue in the image. The plan was to set three 
sets of upper and lower thresholds (one for each channel) and a parking spot would be considered 
occupied when the value of either channel is not between the two thresholds (which would allow the 
detection of excessive/insufficient brightness, an excess of red, or an excess of blue). Unfortunately, this 
did not work out as expected. When attempting to determine the thresholds, it was found that the 
difference between an occupied and free parking spot was very difficult to detect reliably using the 
chrominance, since most vehicles are not excessively red, nor blue. Furthermore, any additional image 
processing techniques that might be needed would take significantly longer, since they would have to be 
applied on three channels instead of one. Finally, only the luminance-based detection was kept, since it 
was helpful for highlights and shadows, unlike the chrominance one. 
Another color space that was considered is HSV (hue, saturation, value). It encodes each pixel as three 
values representing the hue (the color of the pixel), saturation (the intensity of the color), and value (the 
lightness of the pixel). However, it was not used since color-based algorithms were found to be 
inefficient. 

3.4 Motion detection image processing 
 
The image processing pipeline in motion detection is quite complex. Nevertheless, one can see that it 
consists of three distinct steps: difference frame generation, shadow mask generation, and 
dilation/thresholding. Each of these steps is described in the section below, and the overall algorithm is 
shown in the following image (Figure 25): 



Appendix H  26 

 

 
 
 

 
Figure 25: Motion detection image processing pipeline



Appendix H  27 

 

3.4.1 Difference frame 

 
Figure 26: Original frame 

 
Figure 27: Frame after absolute difference operation 

The first image processing step after acquiring a frame is conversion to grayscale, since color information 
is not necessary for motion detection [8][9][10][20]. Then, a given (user-defined) amount of Gaussian 
blur is applied to remove unnecessary details from the frame and thus reduce the amount of extraneous 
contours detected [9][20]. These steps are performed using function process_motion. 
The next step is to determine the moving parts of the frame, i.e. to separate them from the static 
background [8][9][10]. Since the background is not constant in this case (due to the different possible 



Appendix H  28 
 

 
 

parked vehicles and ambient light level), this operation is performed by obtaining the consecutive frame, 
then taking the (absolute) difference between the current and previous frame [8]. In order to eliminate 
motion lasting only approximately one frame, which is considered noise, three consecutive frames can be 
used: It-1, It, It+1 [10]. The difference frame can be computed using | It – It-1| ∧| It+1 – It| (bitwise AND of the 
absolute difference between the current and previous frame, and absolute difference between the next 
and current frame) [10]. 
The following images show a reference frame (Figure 26), and the resulting difference frame computed 
using the previous and next frames (Figure 27). 
3.4.2 Shadow mask 
One of the main difficulties with the above approach to detecting motion (based on separating 
foreground from background) is the presence of shadows: 

 “A more common approach for detecting people in a video sequence is to detect foreground 
pixels, for example via Gaussian mixture models [35, 40]. However, current techniques typically 
have one major disadvantage: shadows tend to be classified as part of the foreground. This 
happens because shadows share the same movement patterns and have a similar magnitude of 
intensity change as that of the foreground objects [30].” [21]. 

For the end goal of this project, counting, shadows pose a very significant problem because they cause 
distinct objects to be merged together in the contour detection algorithm (see section 3.5.3.1), since the 
shadow of an object can overlap another object. Therefore, a shadow detection algorithm was needed. 
After reading was done on different shadow detection algorithms based on various features of shadows 
(chromacity, physical/geometrical features, textures [21], and edges [22]), the chromacity-based 
algorithm described in [23] was chosen because it is the simplest to implement and produces great 
results according to [21]. 
The first step is to account for variations in ambient lighting which affect the appearance of shadows in 
the frame. To make the frames look more or less uniform regardless of time of day, histogram 
equalization (implemented using the OpenCV function cv::Ptr<cv::CLAHE> clahe), which was 
investigated in section 3.2.2, was used. Since only the luminance should be corrected, the frame is first 
converted RGB to the YUV color space, which separates brightness information (Y) and color information 
(U, V). Then, histogram equalization is applied to the Y channel, and the frame is converted back to RGB. 
Since the chromacity algorithm requires comparing foreground pixels to the corresponding background 
pixels [21][23], a background image needed to be defined, which is very difficult in this application 
because the background changes quite often (see section 3.5.5.1). However, it turns out to be feasible 
because the background image does not need to be extremely accurate in this case, since it is not used to 
calculate motion, but simply as a reference for finding shadows. The background was obtained using the 
built-in OpenCV class cv::BackgroundSubtractorMOG2. This class implements a “Gaussian mixture-
based background/foreground segmentation algorithm” [24], although only the background is relevant in 
this application. The background is built by deciding whether each pixel belongs to the foreground or 
background by a probabilistic decision, then the background model is updated using a training algorithm, 
which increases accuracy of future background/foreground segmentation [25]. The background 
subtractor must be applied to each frame to generate the foreground (and background) images [26], and 
the background image is then retrieved using the getBackgroundImage() method of the 
BackgroundSubtractorMOG2 object [27]. The training parameters are specified by the history 
parameter, which specifies the number of past frames used for learning, and the learningRate 
parameter, which specifies the speed at which the background model is updated [24]. Learning the 
background at a slower rate, over a long period produces a more accurate image but is slower, while 
learning the background at a faster rate, over a shorter period produces a less accurate image quicker. A 
reasonably fast history (100 frames) was chosen and the learning rate was kept as default, which 
produced a usable background quickly, at the expense of accuracy: the algorithm learned the background 



Appendix H  29 
 

 
 

over a period of a few seconds only, so vehicles that were static over this period were integrated in the 
background. To solve this issue, the background was refreshed at a set interval (every 30 seconds) by 
recreating the BackgroundSubtractorMOG2 object, to ensure the background is always representative 
of the current state of the scene. 
Once a background has been defined, the foreground pixels are compared to background pixels to 
determine if they are part of a shadow or not [21][23]. To achieve this, the HSV color space is used 
instead of the traditional RGB: “we analyze pixels in the Hue-Saturation-Value (HSV) color space. The 
main reason is that the HSV color space explicitly separates chromaticity and luminosity and has proved 
easier than the RGB space to set a mathematical formulation for shadow detection” [23]. Indeed, the hue 
(encoded as an angle on a circular color wheel) represents which pure color a given pixel is closest to, 
disregarding tint, tone, and shade, the saturation represents where the pixels’ color lies on the spectrum 
between white (saturation 0) and the corresponding pure color (saturation 1), and the value or lightness 
represents how dark a color is (with black corresponding to value 0) [28]. It is obvious that this color 
space is optimal for detecting shadows, since they should have very little impact on the hue, while 
decreasing value greatly: “Since the value (V) is a direct measure of intensity, pixels in the shadow should 
have a lower value than pixels in the background. Following the chromacity cues, a shadow cast on 
background does not change its hue (H)” [21]. 
The conditions for a pixel to be considered a shadow and included in a shadow mask (i.e. 𝑆𝑃(𝑝) = 1) are 
the following [23]: 

 𝑆𝑃(𝑝) {
1 𝑖𝑓 𝛼 ≤  

𝐼(𝑝).𝑉

𝐵(𝑝).𝑉
 ≤  𝛽 ∧ |𝐼(𝑝). 𝑆 − 𝐵(𝑝). 𝑆| ≤ 𝜏𝑠  ∧ 𝐷𝐻(𝑝) ≤  𝜏𝐻

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (6)

   
 𝐷𝐻(𝑝) = min { |𝐼(𝑝). 𝐻 − 𝐵(𝑝). 𝐻|,   360 − |𝐼(𝑝). 𝐻 − 𝐵(𝑝). 𝐻| } (7) 
I(p) represents a pixel from the image (foreground) and B(p) represents the equivalent pixel from the 
background. The .H, .S, .V represent the hue, saturation, and value of the pixel. Essentially, Formula 6 
states that a pixel can be considered part of a shadow if the ratio between its value and the background 
value is between two thresholds α and β, the absolute difference between its saturation and the 
background saturation is below a threshold τs, and the absolute difference between its hue and the 
background hue (computed as an angular value using Formula 7) is below a threshold τH. Note that the 
definition of shadow mask was reversed: pixels start as white (binary 1) and if shadows are detected, 
they are turned black (binary 0). This is because the shadow mask will be applied to the difference frame 
via the bitwise AND function. A lower threshold for saturation was also introduced to achieve better 
results: the condition for a pixel to be considered a shadow in terms of its saturation is now 𝜏𝑠𝑙 ≤
|𝐼(𝑝). 𝑆 − 𝐵(𝑝). 𝑆| ≤ 𝜏𝑠ℎ.  
After the first version of the mask is generated, the closing morphological operation of the mask is 
applied on it. This operation is “useful in closing small holes inside the foreground objects, or small black 
points on the object” [29], and small groups of black pixels need to be eliminated from the mask, since 
they are likely not part of a shadow. Then, the erosion operation is applied to the object. Erosion consists 
in applying a kernel to the image and, for each pixel, replacing its value by the minimum value over the 
kernel [30]. This has the effect of eroding, or decreasing the width of white objects on a black background 
[30]. Alternatively, it dilates, or increases the width of black objects on a white background [30], which 
has the effect of connecting multiple parts of the shadow mask into one contiguous shadow and 
increases the width of shadows slightly to improve the reliability of the mask. The type of the kernels 
used for these two operations, close_kernel and erode_kernel, should also be noted: in this case, it 
is an ellipse. Other types that could be used are the rectangle and the cross. The shapes of different 
kernels (5x5) are shown below [29], which explains why the ellipse was chosen: it should provide the 
smoothest result, without ragged edges. 



Appendix H  30 
 

 
 

1 1
1 1

1
1

1 1
1 1

1 1 1 1 1
1 1
1 1

1
1

1 1
1 1

  

0 0
1 1

1
1

0 0
1 1

1 1 1 1 1
1 1
0 0

1
1

1 1
0 0

  

0 0
0 0

1
1

0 0
0 0

1 1 1 1 1
0 0
0 0

1
1

0 0
0 0

 

   Rectangular kernel       Elliptical kernel          Cross kernel 
To speed up iterating over the numerous subpixels of each frame (1280 · 720 · 3 = 2764800, or nearly 3 
million for a 720p image), multidimensional array vectoring by rows was used, where the base addresses 
of the rows are stored in a pointer [31]:  
 
uchar *p = frame_hsv.ptr(i);  
uchar *q= bg_hsv.ptr(i); 
uchar *r = shadow_mask.ptr(i); 
 
Then, the column addresses are incremented every time the pointer is dereferenced to access the 
corresponding subpixel [31]:  
 
int hue_t = cv::abs((*p++) - (*q++)); 
int sat = cv::abs((*p++) - (*q++)); 
int val_f = *p++; 
int val_b = *q++; 
 
This increases efficiency significantly over using a syntax such as frame_hsv[i][j] because it saves a 
multiplication and addition at every access. 
The following images show a reference frame (Figure 28), the initial shadow mask (Figure 29), the 
shadow mask corrected by morphological operation (Figure 30), the initial difference frame (Figure 31), 
and the difference frame after application of the shadow mask (Figure 32). 

 
Figure 28: Reference frame used to demonstrate shadow detection 



Appendix H  31 
 

 
 

 
Figure 29 Initial shadow mask (before 

morphological operations) 
 Figure 30 Final shadow mask (after morphological 

operations) 

 
Figure 31: Initial difference frame (before 

application of shadow mask) 

 
Figure 32: Final difference frame (after application 

of shadow mask) 
From these images, one can see that the initial shadow mask adequately represents the shadows of 
moving objects, but also has a lot of noise (individual pixels or small groups of pixels that are detected as 
a shadow). After the closing and dilation operations, the final shadow mask has been smoothed 
significantly: the noise is mostly gone, but the contours of shadows are less precise. However, this is not 
an issue: looking at the initial and final difference frames, the application of the shadow mask was 
effective enough to remove the entirety of the shadow from one vehicle and most of it from the other. 
That is because the mask does not need to cover the shadow entirely for proper removal: as long as the 
shadow is no longer contiguous to the object, it will not be detected by the object detection algorithm 
(see section 3.5.3.1). 
3.4.3 Dilation and thresholding 
The difference frame alone is still not suitable because there are too many small details; in particular, 
single large moving objects are represented by a multitude of small shapes, which is unsuitable. 
Therefore, two more steps are performed next: dilation and thresholding [8][9][20]. Dilation is the 
process of applying a kernel to the image and, for each pixel, replacing its value by the maximum value 
over the kernel [30]. This has the effect of dilating, or increasing the width of white objects on a black 
background. Similarly to the morphological closing and erosion used for the shadow mask (see section 
3.4.2), the kernel type is the ellipse, with a user-defined size.  Although dilation causes large objects to 
appear as a single entity, it is still difficult for an algorithm to find the exact edge of such objects, given 
that they are somewhat blurry. Thus, the thresholding operation is applied, which converts all pixel 
values above a user-defined threshold to 100% white (value 255) and leaves the others black [32]. After, 



Appendix H  32 
 

 
 

another dilation operation is performed to close most remaining gaps. The result after thresholding is 
that moving objects have a clearly defined shape and contour. 

 
Figure 33: Difference frame after dilation operation 

 
Figure 34: Difference frame after dilation and thresholding operations 

Separate dilation and thresholding operations are performed for “large objects” (vehicles) and “small 
objects” (pedestrians). That is because the parameters that are optimal for accurate vehicle detection do 
not work well for pedestrians: they tend to be recognized as multiple distinct objects. Therefore, a larger 
dilation kernel size (element_pede) and a lower threshold for casting to white (white_thresh_pede) 



Appendix H  33 
 

 
 

are required for detecting pedestrians accurately. Furthermore, for the vehicle detection, dilation and 
thresholding are performed separately on the top and bottom part of the frames, then they are 
concatenated together. That is because objects are much smaller and details are finer at the top of the 
frame, so different kernels and threshold values are used for the dilation (element_top is smaller than 
element_bot, and white_thresh_top is higher than white_thresh_bot).  
The following images show the results of dilation (Figure 33) and thresholding (Figure 34) when applied 
to the difference frame shown in Figure 27 (section 3.4.1). 

3.5 Motion detection features and algorithms 
3.5.1 The ObjectContour object 
In order to perform the tracking and counting of vehicles and pedestrians in the frame, there must be a 
way to relate the contour of a given object from one frame that object’s contour from the previous 
frame. Furthermore, it would be incredibly useful for each object to carry information about its past 
state, such as the area where it entered the frame, the number of frames it has existed for, etc. To 
regroup all this information, an ObjectContour class was defined. Its objects represent pedestrians or 
vehicles detected in the frame, and carry all aforementioned information in their attributes. The class is 
defined as follows: 
The parameters and their associated methods are the following: 

 vector<cv::Point> contour: a vector of points representing an object’s contour (extracted 
from the difference frame).  

o Getter method: vector<cv::Point> getContour(void) 

 cv::Rect bounding_rect: the bounding rectangle of the ObjectContour’s contour 
o Getter method: cv::Rect getBoundingRect(void) 

 double area: a numerical value for the area of the ObjectContour’s contour 
o Getter method: double getArea(void) 

 cv::Poin2f center: the point representing the center of the ObjectContour’s contour 
o Getter method: cv::Point2f getCenter(void) 

 cv::Poin2f center_orig: the point representing  the center of the first contour assigned to a 
particular ObjectContour, used to calculate the distance an ObjectContour traveled across the frame 

o Getter method: cv::Point2f getCenterOrig(void) 
o Setter method: void setCenterOrig(cv::Point2f n) 

 int id: a number used to identify each ObjectContour uniquely, used to link two ObjectContour 
objects (by assigning them the same ID) 

o Getter method: int getId(void) 
o Setter method: void setCenterOrig(cv::Point2f n) 

 int origin: a number used to identify where a given ObjectContour entered the frame (default 
value: -1, left side: 0, top side: 1, right side: 2, bottom side: 3) 

o Getter method: int getOrigin(void) 
o Setter method: void setOrigin(int n) 

 int end: a number used to identify where a given ObjectContour exited the frame 
(default value: -1, left side: 0, top side: 1, right side: 2, bottom side: 3) 

o Getter method: int getEnd(void) 
o Setter method: void setEnd(int n) 

 int lifetime: a number used to determine how long (how many frames) an ObjectContour has 
existed, used for filtering out false detections (objects appearing for a frame and disappearing 
immediately after)  

o Getter method: int getLifeTime(void) 
o Setter method: void setLifeTime(int n) 



Appendix H  34 
 

 
 

 int exit_status: a value used to determine whether an ObjectContour has in fact disappeared 
from the frame (default value: -1, disappeared for 1 frame (candidate for disappearing): 0, 
disappeared for 2 consecutive frames (definitely disappeared): 1) 

o Getter method: int getExitStatus(void) 
o Setter method: void setExitStatus(int n) 

The constructor for ObjectContour objects requires a vector of points representing an object’s contour 
(contour_poly) and an integer n, which represents an ID value. To define the ObjectContour, the 
contour is set to contour_poly, and the bounding rectangle, area, and center are calculated from that 
contour. Then, the id is set to the provided value and the origin, end, lifetime, and exit status are set to 
the default (initial) values (origin, end, and exit status to -1, lifetime to 0). 
3.5.2 Perspective correction 
One of the main challenges when working with object detection was to properly define a minimum (and 
perhaps maximum) size of object that would be considered as a vehicle or pedestrian. Constant 
thresholds do not work because of the perspective of the frame: the same object will be much bigger 
near the camera than further away: if only thresholds were used, there would be either too many invalid 
(small) objects near the camera that are detected, or too many valid (large) objects far from the camera 
that are not detected. A way to deal with the perspective is by using the following relationships: 
 (𝑜𝑟𝑖𝑔𝑖𝑛. 𝑥, 𝑜𝑟𝑖𝑔𝑖𝑛. 𝑦) = (ℎ𝑜𝑓𝑓𝑠𝑒𝑡 ∙ 𝑓𝑟𝑎𝑚𝑒𝑤𝑖𝑑𝑡ℎ, 𝑣𝑜𝑓𝑓𝑠𝑒𝑡 ∙ 𝑓𝑟𝑎𝑚𝑒ℎ𝑒𝑖𝑔ℎ𝑡) (8) 

 (𝑐𝑒𝑛𝑡𝑒𝑟. 𝑥′, 𝑐𝑒𝑛𝑡𝑒𝑟. 𝑦′) = (ℎ𝑚𝑢𝑙𝑡𝑖 ∙ 𝑐𝑒𝑛𝑡𝑒𝑟. 𝑥, 𝑣𝑚𝑢𝑙𝑡𝑖 ∙ 𝑐𝑒𝑛𝑡𝑒𝑟. 𝑦) (9) 
 (𝑜𝑟𝑖𝑔𝑖𝑛. 𝑥′, 𝑜𝑟𝑖𝑔𝑖𝑛. 𝑦′) = (ℎ𝑚𝑢𝑙𝑡𝑖 ∙ 𝑜𝑟𝑖𝑔𝑖𝑛. 𝑥, 𝑣𝑚𝑢𝑙𝑡𝑖 ∙ 𝑜𝑟𝑖𝑔𝑖𝑛. 𝑦) (10) 
 𝐷𝑖𝑠𝑡. 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑔𝑎𝑖𝑛 ∙ (𝑜𝑓𝑓𝑠𝑒𝑡 − ‖(𝑐𝑒𝑛𝑡𝑒𝑟. 𝑥′, 𝑐𝑒𝑛𝑡𝑒𝑟. 𝑦′) − (𝑜𝑟𝑖𝑔𝑖𝑛. 𝑥′, 𝑜𝑟𝑖𝑔𝑖𝑛. 𝑦′)‖) (11) 
 𝐴𝑟𝑒𝑎 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑔𝑎𝑖𝑛 ∙ (𝑜𝑓𝑓𝑠𝑒𝑡 − ‖(𝑐𝑒𝑛𝑡𝑒𝑟. 𝑥′, 𝑐𝑒𝑛𝑡𝑒𝑟. 𝑦′) − (𝑜𝑟𝑖𝑔𝑖𝑛. 𝑥′, 𝑜𝑟𝑖𝑔𝑖𝑛. 𝑦′)‖)2 (12) 
The definition of the variables is the following: gain is a constant scaling parameter, offset is the 
threshold value (before gain) associated with an object that is as close as possible to the camera, 
(center.x, center.y) are the coordinates of the center of the object, and (origin.x, origin.y) are the 
coordinates of the origin of the perspective, or the point where objects will appear the largest in the 
frame. (origin.x, origin.y) are derived from the frame width multiplied by a parameter hoffset and the frame 
height multiplied by a parameter voffset (Formula 8). (center.x’, center.y’) and (origin.x’, origin.y’) , 
computed using Formula 9 and Formula 10 respectively, are the transformed equivalents of the above: 
the x-coordinate is multiplied by hmulti, and the y-coordinate is multiplied by vmulti to account for the fact 
that a horizontal change of a given distance will lead to a much smaller perspective change than the 
equivalent distance change in the vertical direction. Finally, the one-dimensional (distance) and two-
dimensional (area) thresholds can be computed using Formula 11 and Formula 12. 
Parameters gain, offset, hmulti, vmulti, hoffset, voffset are user-defined and should be chosen with care to avoid 
errors. Notably, the maximum scaled distance between any point in the frame and the origin 
 ‖(𝑐𝑒𝑛𝑡𝑒𝑟. 𝑥′, 𝑐𝑒𝑛𝑡𝑒𝑟. 𝑦′) − (𝑜𝑟𝑖𝑔𝑖𝑛. 𝑥′, 𝑜𝑟𝑖𝑔𝑖𝑛. 𝑦′)‖) should be smaller than offset  to avoid the 
possibility of a negative distance threshold, which would be indicated by missing rectangles in the 
perspective verification (section 3.1.3).  
The effects of perspective correction can be seen by enabling perspective verification, which shows the 
relative size of an object depending on its position in the frame (displayed using rectangles). This allows 
the user to directly view the effect of their changes of the various perspective parameters and eliminate 
the guessing factor in obtaining correct perspective correction. Figure 8 in section 3.1.3 shows an 
example of perspective verification. 
3.5.3 Object detection, tracking, and counting algorithms 
3.5.3.1 Object detection 
After the absolute difference frame is generated and dilation/thresholding operations are performed, 
objects’ contours can be detected. This consists of two steps: a first function locate_contours finds all 



Appendix H  35 
 

 
 

contours in the frame, and a second function remove_contours removes uninteresting contours that 
do not correspond to an object being tracked. Figure 35 shows the object detection algorithm: 

 
Figure 35: Object detection algorithm 

Locating all the contours is achieved through the built-in function cv::findContours() [8][9][20]. 
This function takes as arguments an image from which the contours are to be extracted (in this case, the 
result after thresholding) and a vector of point vectors to store the detected contours (each element of 
this vector represents a list of points that forms a contour) [33]. It also has optional arguments: a contour 
hierarchy to store the level of nesting of each contour (to determine which contours are inside other 
contours), a contour retrieval mode, a contour approximation method, and an offset (here, unnecessary, 
thus set to 0) [33].  
The contour retrieval mode determines which contours are retrieved and how the contour hierarchy is 
built (for example, CV_RETR_LIST retrieves all contours and does not establish a hierarchy, 
CV_RETR_TREE retrieves all contours and organizes the hierarchy based on the level of nesting, and 
CV_RETR_EXTERNAL only retrieves external contours and ignores all contours nested within [33]). For 
this application, CV_RETR_EXTERNAL was the optimal choice because only one contour per object must 
be detected, so the external contour is all that is needed.  
The contour approximation method determines which contour points are stored (for example, 
CV_CHAIN_APPROX_NONE stores every pixel that forms the contour, CV_CHAIN_APPROX_SIMPLE only 
stores end points of line segments, and CV_CHAIN_APPROX_TC89_L1 is the Teh-Chin algorithm 
developed by C.H. Teh and R.T. Chin in 1989 [33]). The Teh-Chin algorithm was chosen for this application 
because it is more efficient than storing all points or only the vertices of straight lines, so it would lead to 
reduced memory usage for storing the contours. For more details on this algorithm, see [34]. 
After contours have been found, they are approximated to polygons using the built-in function 
cv::approxPolyDP() [20]. This function takes as arguments two vectors of points (for the original and 
approximated contours, a parameter corresponding to the maximum distance between a point on the 
original and approximated contour (set to 3) and a Boolean parameter specifying if the contour must be a 



Appendix H  36 
 

 
 

closed shape (set to true) [33]. This simplifies the contours and thus allows even fewer points to be 
stored, speeding up any further calculations. This function uses the Douglas-Peucker algorithm, which is 
described in more detail in [35]. 
After the polygonal contours have been defined, it must be determined whether each contour 
corresponds to a pedestrian, a vehicle, or an irrelevant object (discarded). For vehicles, the selection is 
done based on the area of the contour: objects larger than a certain threshold (gain) are considered as 
vehicles. However, this poses problems when pedestrians cast large shadows: their contour area can be 
as big as a vehicle’s. However, a key differentiator between the contours of vehicles and pedestrians 
casting large shadows is the convexity. Vehicles tend to be almost convex, with few small concave 
corners, while pedestrians and shadows have an “L” shape which is very concave. It thus follows that a 
vehicle’s contour should be almost the same as its convex hull, which is the smallest convex contour that 
contains the original contour [33], while the pedestrian’s contour will be very different from its hull. The 
convex hulls of each contour are computed using the built-in function cv::convexHull(), which takes as 
argument two vectors of points (for the original contour and its convex hull) and computes the convex 
hull. Contours’ areas are also compared to those of their convex hulls and only if a contour has 60% of 
the area of its convex hull can it be considered to belong to a vehicle. 
To determine which objects are pedestrians, an algorithm taking into account contour area and ratio 
between width and height is used. Objects between two thresholds (gain_pede and 4·gain_pede) 
with a height of at least 0.8 times their width are considered as pedestrians, and the upper threshold is 
extended to 6·gain_pede if the contour is 1.5 times taller than wider, since this shape is very typical of 
a human being. The two gain parameters are used-defined and adjustable.  
If a contour is detected as a vehicle or pedestrian, an ObjectContour object (see section 3.5.1) is 
defined) based on this contour, and is assigned a unique ID via global_id++. This ObjectContour is 
then added to a vector (small_contours_poly for pedestrians, or contours_poly for vehicles). 
3.5.3.2 Object tracking 
Object tracking requires contour information from both the current frame and previous ones. Therefore, 
contours from the last three frames are stored in a vector of vector of ObjectContour objects (each 
inner vector corresponds to contours from a given frame). The previous frame contours are defined and 
updated in the manner shown below. Note that contours from up to three frames behind are used to 
track both vehicles and pedestrians (more than this leads to errors where two distinct objects may be 
considered the same, and fewer than this is not enough information). 
Before tracking vehicles across multiple frames, nearby contours from each frame must be combined into 
a single contour. Indeed, even though a significant amount of dilation is performed (see section 3.4.3), 
large vehicles such as buses or trucks can still be detected as two, three, or more individual objects, 
which is unsuitable. This problem does not occur with pedestrians, so this step is only performed for 
vehicle detection. Figure 36 below shows the contour combination algorithm steps, and they are then 
explained. 
To combine contours, applying more dilation is not suitable because the two or more contours 
corresponding to a large object may be very far apart (several dozen pixels), so applying such a large 
amount of dilation will absolutely annihilate the precision of contour detection. Therefore, a more 
intelligent algorithm for performing contour combination was devised. Instead of using dilation to 
connect contours, it computes their convex hull using the built-in function cv::convexHull().This is 
preferable to dilation because although two contours can be somewhat far from each other, one may 
“fit” into a gap of the other, so their hulls have an obvious overlap. In some cases, however, this is not 
sufficient, so this algorithm also uses contours from the previous frame to compute overlap. If two 
contours’ hulls from the current frame overlap each other, or both overlap a contour hull from the 
previous frame, the contours in question are merged into a single one.  



Appendix H  37 
 

 
 

The algorithm iterates over all combinations of two contours, which are then checked for overlap if both 
contours are located in the bottom part of the frame. That is because contour combination should 
absolutely not be performed at the top part of the frame, since it would create more problems than it 
would solve (cars following each other in close proximity being combined). To check two contours for 
overlap, a mask is defined for each contour’s convex hull. This mask is a black (binary 0) image upon 
which the convex hull is drawn and filled with white (binary 1). Then, a bitwise AND operation is 
performed on the two matrices and the resulting matrix, overlap, can be used to determine whether 
there is any overlap or not. If the mean value of this matrix is bigger than 0, it contains some white pixels: 
overlap is found.  
If there is no overlap between two contours from the current frame, contours from the previous frame 
can be used to “fill the gap” between the two contours. The two contours in question are checked for 
overlap with every single contour from the previous frame. Overlap is determined in the same way as the 
previous case: by defining masks for each convex hull, using bitwise AND, and computing the mean of the 
resulting matrix. The overlapping flag is set and the iteration stops if both contours from the current 
frame have some overlap with any contour from the previous frame. 
If the overlapping flag has been set by any previous operation, a new contour that contains points 
from both overlapping contours is defined. To avoid contour self-intersection (which leads to wrong 
results when calculating area [33]), only points from one contour that are not in the bounding rectangle 
of the other (and vice-versa) are added to the new contour. The new contour also gains the ID of one of 
the old contours. Then, the two old contours are removed from the ObjectContour vector and the new 
combined contour is added. 
After contours have been combined in the case of vehicles, contour matching can occur between 
contours from the previous frame and new ones that appeared in the current frame. This is performed 
using a match_contours function, whose algorithm is shown in Figure 37 below and detailed in the 
following paragraphs. 
Specifically, for each contour in the current frame, the matching algorithm iterates over contours from 
the previous frame, searching for the closest contour that is below a certain minimum distance threshold. 
Only one old contour can be matched with every new contour. Priority is given to old contours that have 
been matched previously (lifetime parameter greater than 1) and have not been marked as exited from 
the frame (exit status parameter equal to -1). Priority is granted by allowing an old contour and a new 
contour to be matched even if another old contour with a shorter distance to the given new contour has 
been matched with it. When a matching contour is found, the index values are set to the contour’s 
position in the old ObjectContour vector. If a contour satisfying these conditions is found (index values 
are a valid array position), the contours are linked. The values of the ID, the origin, and the exit point are 
copied from the old contour to the new, and the new contour is given the life time value of the old one 
incremented by one frame. Furthermore, this contour’s ID is added to a contour_id vector storing the 
IDs of all contours that have been matched with another.  



Appendix H  38 

 

 

 

 

 

Figure 36: Contour combination algorithm 

 
 
 
 
 
 
 
 
 



Appendix H  39 
 

 
 

 
 
 
 

 
Figure 37: Contour matching algorithm



Appendix H  40 

 

3.5.3.3 Object counting 
So far, the motion detection algorithms (object detection and tracking) have been fairly similar for both 
vehicles and pedestrians. However, for counting, the algorithm used for the two classes of objects differs 
significantly. This is due to the different behavior of vehicles and pedestrians related to their motion in 
the frame. Vehicles must enter from a designated area (road) and most of them will exit through another 
such designated area, with a very small minority remaining in the frame (parking). Pedestrians, on the 
contrary, tend to appear and disappear anywhere in the frame because they either stop and restart 
moving or enter and exit buildings frequently.  
The first step for both algorithms is the same: to check whether there are any contours that just 
appeared or just disappeared, which is done by pairwise comparisons. To determine if a contour just 
appeared, each new contour’s ID value are compared to all old contours’ IDs, and if no match is found, 
new_contours is incremented. Similarly, to determine if a contour just disappeared, each old contour is 
compared to all new contours, and del_contours is incremented if there is no match. The 
calculate_diff function executes these steps; its algorithm is shown in the image below (Figure 38). 

 
Figure 38: Contour counting (identification) algorithm: counting new/deleted contours 

From this point on, the two algorithms (vehicle and pedestrian detection) are different and the two 
approaches are outlined below. 
3.5.3.3.1 Vehicle counting 
Once contours have been matched to ones in the previous frame, the process of counting can occur. 
Specifically, this portion of the program is concerned with detecting when and where vehicles enter or 
exit the frame (through designated entrance and exit zones at the left, top, right, or bottom areas of the 
frame). It also keeps track of the path of each individual vehicle whenever possible. Unfortunately, the 
program can sometimes fail to keep track of a particular vehicle if it stops in the middle of the frame or is 
obscured by another vehicle. However, this does not affect the count of vehicles passing through each 
entrance or exit, so it is not a major issue. 
If there are new contours, their point of origin must be determined, which is done using the contour 
entering/exiting identification algorithm in Figure 39 below, which is explained further down. 



Appendix H  41 
 

 
 

 
Figure 39: Contour counting (identification) algorithm: setting new vehicle contour origin 

Every contour in the current frame is checked for matches with an old contour (this is done by verifying if 
the contour’s ID is in the contour_id vector (see section 3.5.3.2). If its ID is not present in that vector, it 
is a new contour and a candidate for a contour that just entered the frame. The position of this contour’s 
center is then checked: if it is within one of the designated entrance zones, its origin parameter is set 
accordingly (see section 3.5.1) using setOrigin() and the number of new contours is decremented. If it 
reaches 0, the operation stops to avoid false positives.  
If there are deleted contours (contours that disappeared), their point of exit must be determined. This 
approach is very similar to determining origin of new contours, but with a different set of conditions. The 
second part of the new/deleted contour identification algorithm is once again shown (Figure 40) and 
explained below. 

 
Figure 40: Contour counting (identification) algorithm: setting deleted vehicle contour end point 

Every contour from the previous frame is checked for potential disappearance: the position of each 
contour’s center is checked to determine if it is within one of the designated exit zones. If it is the case, 
an additional verification is performed to avoid glitches: the object’s origin must not be the same as its 
exit point. If so, the object’s exit status parameter is set to 0 (possibly exited) using setExitStatus() 
if it was not already set previously and its exit point is set using setEnd(). The number of deleted 
contours is then decremented. If it reaches 0, the operation stops to avoid false positives. 
The next step is to confirm that new/deleted contours identified in the above algorithm are indeed valid 
events, and increment the appropriate counts (total vehicles passed and traffic through each gate). A 
new/deleted contour confirmation algorithm executes this function; its steps are shown in Figure 41 
below, then explained. Note that the procedure is different for entering and exiting vehicles.  

 



Appendix H  42 
 

 
 

 
Figure 41: Contour counting (confirmation) algorithm for vehicles 

For entering contours, after a vehicle has been assigned an origin via setOrigin(), the program waits 
for it to exist for two consecutive frames (lifetime equal to 2) to ensure it is an actual detection and not 
noise. Then, the number of vehicles entered is incremented, as well as the traffic count of the gate 
through which the contour entered. 
For exiting contours, after a contour has been assigned an exit point via setEnd() and its exit status has 
been set to 0 via setExitStatus(), the program must verify that the vehicle has indeed exited the 
frame by checking if it is not present for two consecutive frames. Therefore, each contour in the second-
to-last frame that has exit status 0 has its ID checked against all the IDs in contour_id. If it is not found, 
this means the vehicle has not been present for two consecutive frames and thus has most likely exited. In 
that case, the vehicle’s exit status is set to 1 (certainly exited) via setExitStatus(), and every other 
contour with the same ID in all tracked frames also has its exit status set to 1 to avoid the same vehicle 
exiting being logged twice. Then, the total number of vehicles exited and traffic through the relevant exit 
zone is incremented. Also, whenever a vehicle has exited the frame, its trajectory (point of origin and exit) 
is logged to a log file with a timestamp (if the program lost track of the vehicle, its origin is marked as 
“unknown”). Unlike for new vehicles, a restriction on contour life time is not necessary. 
3.5.3.3.2 Pedestrian counting 
For pedestrian counting, the program must detect when and where pedestrians enter or exit the frame: 
through designated entrance and exit zones at the left, top, right, or bottom areas of the frame, but also 
outside of these areas (in the center of the frame). It also keeps track of the path of each individual 
pedestrian whenever possible. Unfortunately, the program can sometimes fail to keep track of a 
particular pedestrian if it stops in the middle of the frame or is obscured by another object. However, 
pedestrians appearing or disappearing outside of a designated zone do not affect the count of 
pedestrians entering or leaving the frame, so it is not a major issue. The algorithm also has identification 
and confirmation steps, like vehicle counting (see section 3.5.3.3.1). 

 
Figure 42: Contour counting (identification) algorithm: setting new pedestrian contour origin 



Appendix H  43 
 

 
 

Similarly to vehicle detection, if there are new contours, their point of origin must be determined by 
checking for matches with an old contour (see section 3.5.3.3.1). This is done using the contour 
entering/exiting identification algorithm in Figure 42 below, which is explained further down. 
For new contours, the position of this contour’s center is then checked: if it is within one of the 
designated entrance zones, its origin parameter is set accordingly (see section 3.5.1) using setOrigin() 
and the number of new contours is decremented. If it reaches 0, the operation stops to avoid false 
positives.  
If there are deleted contours, their point of exit must be determined by checking for potential 
disappearance. However, unlike for vehicles, the point of exit can be anywhere inside the frame, so the 
identification algorithm is different. The algorithm steps are shown below (Figure 43) and explained. 

 
Figure 43: Contour counting (identification) algorithm: setting deleted pedestrian contour end point 

 
Figure 44: Contour counting (confirmation) algorithm for pedestrians 

Checking for contours inside designated exit zones, like for vehicles, is not enough. Therefore, for 
pedestrians, checking if a particular contour has disappeared involves a process similar to the one in 



Appendix H  44 
 

 
 

calculate_diff() function: the ID of each contour from the previous frame is compared to that of all 
current frame contours. If a matching contour is not found and the old contour’s life time is greater or 
equal to 5 frames (to avoid glitches), the contour’s life time is set to 0 (possibly exited) using 
setExitStatus() and its exit point is set accordingly using setEnd() (if the contour’s origin and exit 
point are the same, the exit point is set to -2, a special value for this purpose). The number of deleted 
contours is then decremented. If it reaches 0, the operation stops to avoid false positives. 
The new/deleted contour confirmation algorithm is vastly different from that of vehicles. Due to the 
different approach used for identifying entering/exiting contours in the above algorithm, the 
confirmation algorithm can be simplified: it only needs to consider pedestrian exiting events. The 
algorithm is shown (Figure 44) and explained below. 
For pedestrian counting, the program ignores events corresponding to pedestrians appearing the frame, 
instead doing all the counting when a pedestrian exits the frame. This is impossible for vehicles because it 
does not track vehicles that disappear in the middle of the frame, so they must be counted when they 
enter or information is lost. However, for pedestrians, the software generates an event at any time a 
pedestrian exits, regardless of whether it is in a designated exit zone, so all the events can be generated 
upon disappearance of a pedestrian. 
After a pedestrian contour has been assigned an exit point via setEnd() and its exit status has been set 
to 0 via setExitStatus(), the program must verify that the pedestrian has indeed exited the frame by 
checking if it is not present for two consecutive frames. Every contour whose exit status has been set to 0 
is checked for two conditions to remove noise: it must have a life time greater than 5 frames, and have 
traveled a minimum of 25 pixels to be considered a valid pedestrian. If this is the case, its ID is once again 
checked against all IDs of current frame contours, and if a match is not found, the contour has definitely 
exited the frame. Its exit status and that of every contour with the same ID is set to 1 (certainly exited) 
using setExitStatus()). Its exit point is reset to -1 (default, not in any designated zone) and checked 
again, since it might have varied. Numbers from 0 to 3 indicate a valid exit zone, -2 indicates that the 
contour has entered and exited from the same point and is not to be counted, since it is very likely a glitch.  
Then, based on the origin set previously and the exit point, an appropriate message is generated and 
saved to a log file, and the pedestrian count in the frame is changed. A pedestrian that has entered and 
exited through (different) designated zones will generate a “Entered from the *location* and exited from 
the *location*” message and not change the count. A pedestrian that has entered through a designated 
zone and disappeared inside the frame will generate a “Entered from the *location* and stayed in the 
frame” message and increase the count by 1. A pedestrian that has appear inside the frame and has exited 
through a designated zone will generate a “Was already in the frame and exited from the *location*” 
message and decrease the count by 1. A pedestrian that has appeared and disappeared inside the frame 
will generate a “Remained in the frame” message and not change the count. This information is written to 
the log file along with an event time stamp, so the code can easily be adapted to interact with a proper 
database. 
3.5.3.3.3 Database logging 
The gate status algorithm, the motion detection software’s database logging algorithm, is very simple, 
since it does not interpret data given to it further unlike the parking detection logging algorithm (see 
section 3.3.1). The steps are shown in Figure 45 below and are self-explanatory. 

 
Figure 45: Motion detection database logging algorithm 

3.5.4 Dead zones 
One particularity of the object counting algorithm developed in this project is that it requires contours to 
appear or disappear to be counted as an object that entered or exited, instead of simply relying on the 
object’s contour crossing the region of interest. This method of contour detection is very robust because 



Appendix H  45 
 

 
 

it is much less likely to result in an object being counted multiple times, unlike in competing software 
(refer to section 4.2 for results). However, the main disadvantage of this method is that it limits flexibility 
of camera placement: it must be configured such that the entrance and exit zones are placed exactly at 
the edge of the frame. Furthermore, it is sometimes far too difficult to detect individual objects at the 
edge of the frame, let alone count them because they appear too small. 
The solution was to introduce dead zones, or regions of the frame where no motion will be detected: in 
the difference frame, the regions corresponding to dead zones will be blacked out. They are declared 
very similarly to entrance or exit zones (see section 3.1.1). This solves the aforementioned issue: if a dead 
zone is placed between an entrance zone and the edge of the frame, it ensures that contours entering 
the frame will only be detected once they appear in the entrance zone. Similarly, if the dead zone is 
between an exit zone and the edge of the frame, any contour that passes through the exit zone will 
disappear shortly after. For an example of how dead zones can enable entrance or exit zones non-
adjacent to the frame edges, see Figure 46: 

 
Figure 46: Vehicle about to disappear through gate away from edge of frame thanks to dead zone 

Another advantage of dead zones is that they allow masking out some regions of the frame where 
undesired contours may appear. For example, if one wishes to count vehicles traveling across a road, it is 
possible that cyclists passing on the nearby bike path interfere with the count: if a car and a group of 
bikes are detected as a single contour, its centroid may no longer be within the entrance zone designated 
for the car, and the count will be missed. Placing a dead zone over the bike path will ensure that the 
cyclists will be masked out and will not interfere with the proper detection of the vehicle. For an example 
of improvements to vehicle contour detection due to motion detection dead zones, see Figure 47:  

 

  
Figure 47: Comparison of contour detection with deadzones disabled (poor contour detection) and 

enabled (better contour detection) 

3.5.5 Defunct features 
3.5.5.1 Background subtraction for motion detection 
In computer vision motion detection, there are two main techniques to identify moving objects: the one 
used in this project, computing the absolute difference between two (or three) consecutive frames, and 
separating foreground from background. The two techniques are compared in [36] and the author 



Appendix H  46 
 

 
 

determines that subtracting consecutive frames has a significant disadvantage: if the object is moving 
slowly, it will not be detected as a whole contiguous object but as multiple small objects, and could even 
not be detected at all. Instead, each frame can be compared with the first frame of the video sequence, 
but this also has disadvantages: if the first frame contains a static object that then leaves the frame or if a 
new object permanently enters the frame and stays there, motion will be detected continuously [36]. The 
best algorithms are based on a variable background of the scene, with various algorithms to build the 
background that are “too complex” [36]. Fortunately, OpenCV has many such built-in algorithms. 
One algorithm that was strongly considered using is the BackgroundSubtractorMOG2, implemented 
as cv::BackgroundSubtractorMOG2 and discussed in section 3.4.2. This algorithm is very easy to use: 
a single apply() statement takes the current frame and outputs the foreground as a binary mask, and 
the background is built automatically without the user’s intervention. Unfortunately, this method did not 
succeed: it was too sensitive to motion, classifying even very small moving objects as part of the 
foreground. Furthermore, the same issue as the static background example in [36] occurred: static 
objects were integrated in the background and when they exited, false motion was continuously 
detected for several seconds until the background was updated. The subtraction of consecutive frames 
was thus chosen, an approach successfully executed in [8] [9] [10]. To solve the lack of sensitivity to small 
motion, dilation and thresholding were used to make moving objects much more apparent (see section 
3.4.3). This method worked much better than the complex BackgroundSubtractorMOG2, so that idea 
in favor of an algorithm that was also much simpler and faster.  
3.5.5.2 Contour separation algorithm 
One issue that occurred in the object detection portion of the software was that nearby objects were 
detected as a single, large object by the cv::findContours() function because their shapes 
overlapped after dilation and thresholding was applied. Since very little control can be exerted over the 
sensitivity of the findContours() function, the difference frame had to be modified. The initial idea for 
a solution was a contour separation algorithm: after contours were found using findContours() and 
irrelevant contours were eliminated, erosion would be applied on the resulting frame. This would have 
the effect of separating objects that were connected by thin “bridges”, since erosion has the effect of 
reducing the width of white objects on a dark background. Each of the detected contours would then be 
copied to its own frame, which would each be dilated, then findContours() would be applied to each 
of them and the contours would be detected individually. This would restore each original contour’s size 
without causing the contours to merge again, allowing two distinct contours that overlap slightly. 
Unfortunately, this technique was not successful: an optimal erosion kernel size that was successful in 
separating all contours while not completely eliminating some could not be found. It was also too difficult 
to monitor and debug this algorithm. It was abandoned it in favor of separating the frame into a “top” 
and “bottom” region, to which different dilation kernels and minimum thresholds for the thresholding 
operation. This approach makes sense: after all, objects at the top of the frame are smaller than those at 
the bottom, so should be affected by a proportionally smaller kernel, but implementing a smooth kernel 
size transition would be too complex, so a rudimentary approximation is sufficient. This new approach 
ended up working much better than the very complex and slow separation algorithm, since the original 
issue of nearby objects clustering occurred mostly at the top of the frame. 
3.5.5.3 Shadow mask with CIE L*a*b*/Cie L*u*v* color space 
As mentioned in section 3.4.2, the shadow mask generation algorithm relies on the HSV color space 
(sometimes referred to as HSB). Although it is simple to understand (hue corresponds the type of color, 
saturation corresponds to the strength of color, value or brightness corresponds to the brightness), it is 
not optimal for several reasons and “HSB and HLS should be abandoned” [37]. The main reason is that 
HSV is not perceptually uniform: a small change to one of the component values is not approximately 
equally perceptible across the entire range of the value, unlike the CIE L*a*b* and CIE L*u*v color spaces 
[37]. For example, a brightness value of 50% should always appear to be half as bright as a value of 100%, 



Appendix H  47 
 

 
 

but yellow is approximately six times more intense than blue at the same brightness due to a simplified, 
inadequate formula [37]. Furthermore, the hue is defined as an angular value (from 0 to 360°), which 
makes computations difficult [37]. Even worse, hue is piecewise-defined (different formulas for each 60° 
portion of the circle), which leads to visible discontinuities in the hue channel [37]. Regardless, the HSV 
color space was kept instead of transitioning to CIE L*a*b* or CIE L*u*v. The main reason is the 
complexity of the formulas for converting RGB to either of these color spaces, which involve several steps 
and are the following [38]: 
 

 [
𝑋
𝑌
𝑍
] = [

0.412453 0.357580 0.180423
0.212671 0.715160 0.072169
0.019334 0.119193 0.950227

] ∙ [
𝑅
𝐺
𝐵
] (13) 

 𝐿 =  {
116 · 𝑌1/3, 𝑌 > 0.008856 
903.3 · 𝑌, 𝑌 ≤ 0.008856

 (14) 

 𝑢′ = 4 ·
𝑋

𝑋+15·𝑌+3·𝑍
 (15) 

 𝑣′ = 9 ·
𝑌

𝑋+15·𝑌+3·𝑍
 (16) 

 𝑢 = 13 · 𝐿 · (𝑢′ − 0.19793943) (17) 
 𝑣 = 13 · 𝐿 · (𝑣′ − 0.46831096) (18) 

 𝑓(𝑡) =  {
𝑡1/3, 𝑡 > 0.008856

7.787𝑡 +
16

116
, 𝑡 < 0.008856

 (19) 

   

 𝑎 = 500 ∙ (𝑓(𝑋) − 𝑓(𝑌)) + 128 (20) 

 

 𝑏 = 200 ∙ (𝑓(𝑌) − 𝑓(𝑍)) + 128 (21) 

 
From these equations, one can see that converting to and from these color spaces is somewhat 
computationally intensive. Formula 13 is a simple linear transformation, but Formulas 14, 19 involve 
exponentiation operations and Formulas 15, 16 involve floating-point division. Despite this, using either 
the CIE L*a*b* or CIE L*u*v color space did not improve the results of shadow mask generation. Indeed, 
the main issue with shadow detection is that surfaces of black vehicles are very similar to shadows at the 
pixel level: the ratio of foreground brightness to background brightness changes by approximately the 
same amount and the color changes very little from foreground to background. Therefore, regardless of 
the color space used, it is extremely difficult to distinguish shadows from black vehicles, and it is not 
worth using a more computationally intensive, less intuitive color space. 
3.5.5.4 Matching contours to known shapes 
For vehicle detection, it is of utmost importance to detect and filter out contours corresponding to 
pedestrians and cyclists. In ideal conditions (daytime), cyclists and pedestrians are too small to be 
detected, but in the morning and evening, the shadows they cast make the entire contour exceed the 
vehicle size threshold (see section 3.5.3.1 for more details). Therefore, the implementation of a shape-
based filter implementation that would remove contours whose shape resembles a reference contour 
was attempted. This is achieved using the cv::matchShapes() function, which determines how closely 
two shapes are related using the Hu invariants: a set of seven image moments that are invariant to image 
scale, rotation, and reflection [33]. This property of the Hu invariants is extremely useful because the 
reference image may be found in many different sizes and orientations, and may even be reflected (in 
the evening, when the shadow faces the other way). For more information on the Hu invariants and their 
definitions, refer to [39]. The cv::matchShapes() function returns a positive floating-point value that 
is smaller the more the two images are similar to each other, so a threshold was calibrated, below which 



Appendix H  48 
 

 
 

a given contour is close enough to the typical shape of a pedestrian and its shadow. The reference 
contour used in this case is shown in Figure 48: 

 
Figure 48: Reference image of a pedestrian and its shadow 

Unfortunately, this method did not work as well as expected. The main issue was that when multiple 
contours belonging to pedestrians or cyclists are near each other, they can overlap and the resulting 
contour looks nothing like the reference contour. Ultimately, a more basic, yet more functional solution is 
to use the convexity of the shape to eliminate the undesirable contours (see section 3.5.3.1). 

4. Results, comparisons, limitations 
4.1 Parking detection results  
4.1.1 Performance analysis 
Table 2: Parking detection results (using software developed in this project) 

Stream 
name 

Stream info Number of 
parking 
spots 

Number 
of 

mistakes 

Percentage 
accuracy 

1 172.168.10.30, 05 May 2017 09:57:39-09:58:02 11 0 100% 

2 172.168.10.30, 05 May 2017 10:10:22-10:10:49 11 0 100% 

3 172.168.10.30, 05 May 2017 10:38:16-10:38:36 11 0 100% 

4 172.168.10.30, 05 May 2017 10:43:57-10:44:26 11 1 90.9% 

5 172.168.10.30, 05 May 2017 11:21:37-11:22:16 11 0 100% 

6 172.168.10.30, 05 May 2017 11:32:57-11:33:06 11 0 100% 

7 172.168.10.30, 05 May 2017 11:55:11-11:55:27 11 0 100% 

8 172.168.10.30, 05 May 2017 11:57:37-11:58:49 11 1 90.9% 

9 172.168.10.30, 05 May 2017 12:49:22-12:49:50 11 0 100% 

10 172.168.10.30, 05 May 2017 12:52:52-12:53:19 11 0 100% 

11 172.168.10.30, 05 May 2017 13:01:57-13:02:43 11 0 100% 

12 172.168.10.30, 05 May 2017 13:39:48-13:40:52 11 0 100% 

13 172.168.10.30, 05 May 2017 14:04:18-14:04:57 11 0 100% 

14 172.168.10.30, 05 May 2017 14:43:14-14:43:43 11 1 90.9% 

15 Clip included with original software [6], duration 02:29 16 0 100% 

Total  170 3 98.2% 

With all the above modifications to the parking detection logic and image processing, the reliability of the 
parking detection software in typical conditions (from early morning to late evening, with good weather 
conditions) is more than satisfactory. Testing footage consisted of 14 short clips of an intersection in 



Appendix H  49 
 

 
 

downtown Montreal with 11 parking spots each, as well as a test video file included with the original 
software [6] which features 16 parking spots, for a total of 170 parking spots monitored. The test file 
does not pose much of a challenge, since it is a parking lot and there is little activity other than cars 
entering or leaving parking spots. Also, the camera angle is such that a car in a parking spot only covers a 
small portion of adjacent parking spots. On the contrary, the downtown intersection is much more 
challenging: cars cover adjacent parking spots due to the poor camera angle, some parking spots are only 
partially visible, and there is a lot more activity (for example, traffic). The performance of the parking 
software is defined based on the number of mistakes: detections that would cause an uncertain or wrong 
parking status detection and last more than approximately a second, and is quantified according to the 
following formula (Formula 22): 

 (1 −
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑖𝑠𝑡𝑎𝑘𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑘𝑖𝑛𝑔 𝑠𝑝𝑜𝑡𝑠
) · 100% (22) 

While viewing the footage, only 3 mistakes were recorded which corresponds to an accuracy of 167/170, 
or 98.2% (for detailed data, see Table 2 below). These mistakes mostly occurred on a single parking spot, 
so the reliability could be improved significantly by tweaking the parameters related to that spot only. As 
expected, the performance of the software is relatively consistent, with only 0 or 1 mistakes in each clip. 
Also, as expected, the errors all occurred in the downtown intersection, not the significantly easier 
parking lot test clip. The following table shows detailed results: 
4.1.2 Non-ideal conditions  

 
Figure 49: Parking detection issues during the night 

Unfortunately, in less ideal conditions (in the middle of the night, during rain or wind), the software does 
not perform as reliably. During the night, most of the frame is too dark, which makes it very difficult to 
detect edges: the edge-based algorithm detects much less vehicles than in the daytime, leaving a 
significant portion of the work to the luminance-based algorithm, which is inherently less reliable. Also, 
the lighting of the frame is not uniform due to bright spots created by street lamps and dark spots where 
no lamp happens to shine. While histogram equalization via CLAHE (see section 3.2.2) helps make the 
average luminance comparable to that of the day, it cannot deal with the uneven lighting effectively, 
leaving some areas overexposed or underexposed despite its adaptive nature that promises to prevent 



Appendix H  50 
 

 
 

this issue. This leads to false detections by the luminance-based algorithm. The following image 
illustrates these issues: 
Figure 49 demonstrates that the edge-based detection algorithm functions poorly at night: in parking 
spot 5, the lower two quadrants are not marked as occupied despite the presence of a vehicle with quite 
a few edges. It also shows the shortcomings of CLAHE: illegal parking zone 10 is marked as occupied even 
though there is nothing there, since it is a very dark region (one of the darkest in the whole frame). 
Another weather condition that causes issues is the rain. As mentioned in section 3.2.3, it causes the 
texture of the asphalt to become too rough, which can be solved with denoising. However, doing so 
incurs a significant performance penalty, even with optimizations. Moreover, rain makes the asphalt 
reflective. This poses a problem for the edge-based detection algorithm, which detects the reflections of 
objects as objects (false detections). This can occasionally cause errors in the detection algorithm, as 
illustrated in Figure 50. It demonstrates that the edge-based algorithm can sometimes detect reflections. 
In particular, the entirety of parking spot 3 is shown as occupied even though the scooter occupies only 
half of the area; the other half is covered by its reflection. This is not a problem in the current setup, 
where parking spot 3 is a single zone, but if it was split into two zones (for two scooters), an empty spot 
would be marked as occupied. 
The last problem related to operating conditions is wind, which causes the camera mount to shake and 
occasionally lose focus, making the image blurrier for a few seconds while the camera recovers and re-
focuses. The blur leads to a very low value reported by edge detection algorithm, making it difficult to 
identify if a spot is occupied (a similar effect as that described in section 3.2.1). Since this effect is 
typically short-lived, it does not cause any issues. However, on a very windy day, it could very well persist 
longer than a few seconds. Figure 51 demonstrates the sensitivity of the edge detection algorithm to blur 
caused by wind: the vehicles in parking zones 0, 2, and 6 are not being detected properly. This is only an 
issue if the loss of focus coincides with the moment when the program samples the status of each 
parking spot for logging it to file (it will lead to one wrong set of parking statuses being written, which will 
be rectified at the next event log). However, in an excessively windy day, this error could occur multiple 
times. 

 
Figure 50: Parking detection issues during rainy weather (zone 3) 



Appendix H  51 
 

 
 

 
Figure 51: Parking detection issues during wind (zones 0, 2, and 6) 

4.1.3 Comparison to other software 
Table 3: Parking detection results (using reference software [6]) 

Stream 
name 

Stream info Number of 
parking 
spots 

Number 
of 

mistakes 

Percentage 
accuracy 

1 172.168.10.30, 05 May 2017 09:57:39-09:58:02 11 2 81.8% 

2 172.168.10.30, 05 May 2017 10:10:22-10:10:49 11 4 63.6% 

3 172.168.10.30, 05 May 2017 10:38:16-10:38:36 11 4 63.6% 

4 172.168.10.30, 05 May 2017 10:43:57-10:44:26 11 2 81.8% 

5 172.168.10.30, 05 May 2017 11:21:37-11:22:16 11 0 100% 

6 172.168.10.30, 05 May 2017 11:32:57-11:33:06 11 0 100% 

7 172.168.10.30, 05 May 2017 11:55:11-11:55:27 11 0 100% 

8 172.168.10.30, 05 May 2017 11:57:37-11:58:49 11 1 90.9% 

9 172.168.10.30, 05 May 2017 12:49:22-12:49:50 11 0 100% 

10 172.168.10.30, 05 May 2017 12:52:52-12:53:19 11 1 90.9% 

11 172.168.10.30, 05 May 2017 13:01:57-13:02:43 11 2 81.8% 

12 172.168.10.30, 05 May 2017 13:39:48-13:40:52 11 2 81.8% 

13 172.168.10.30, 05 May 2017 14:04:18-14:04:57 11 2 81.8% 

14 172.168.10.30, 05 May 2017 14:43:14-14:43:43 11 1 81.8% 

15 Clip included with original software [6], duration 02:29 16 1 93.8% 

Total  170 22 87.1% 

To quantify the impact of the performance improvements made to the parking detection software, the 
results of the modified version and the original one were compared using the same video clips. The unique 



Appendix H  52 
 

 
 

Laplacian threshold parameter was fine-tuned until the best possible results were obtained, which are 
shown in Table 3 below: 
The initial software performs decently enough, with an overall count of 22 mistakes and overall accuracy 
of 87.1%, considering how limited the options for fine-tuning are. However, it does not even come close to 
the 98.2% achieved by the modified version of the software with semi-optimized settings; it would be 
possible to increase this even further. In addition to this, for each test, the modified version of the 
software has better performance, so no feature that was added ended up worsening overall performance. 
It should also be noted that the original software does not have any provisions for dealing with difficult 
conditions such as night-time, so it may work very poorly or not at all at night. 

4.2 Motion detection results 
4.2.1 Consistency and accuracy analysis 
To test the motion detection software, three five-minute clips from the Jeanne-Mance and President-
Kennedy intersection were selected for vehicle detection, and one ten-minute clip from the Clarke and 
Ontario intersection for pedestrian detection, all of which were in typical conditions (morning and day, 
with good weather conditions). The test clip included with the reference software [34] that was tested in 
section 4.2.3 was also used, which is not very challenging compared to the application in this project 
(top-down view, contains only vehicles, only a few seconds long). 
To quantify the performance of the motion detection software, two metrics were used: consistency, and 
accuracy. In this case, consistency refers to the consistency between the recorded count of objects that 
have entered the frame and the count of those that have exited (the values are adjusted based on the 
initial and final number of vehicles in the frame). To calculate the performance of the software in the 
consistency category, Formula 23 is used (the percentage error between the count of objects that 
entered and exited is subtracted from 100%): 

 (1 −
|𝑂𝑏𝑗𝑒𝑐𝑡𝑠 𝑒𝑛𝑡𝑒𝑟𝑒𝑑:𝑐𝑜𝑢𝑛𝑡−𝑂𝑏𝑗𝑒𝑐𝑡𝑠 𝑒𝑥𝑖𝑡𝑒𝑑:𝑐𝑜𝑢𝑛𝑡|
1

2
·(𝑂𝑏𝑗𝑒𝑐𝑡𝑠 𝑒𝑛𝑡𝑒𝑟𝑒𝑑:𝑐𝑜𝑢𝑛𝑡+𝑂𝑏𝑗𝑒𝑐𝑡𝑠 𝑒𝑥𝑖𝑡𝑒𝑑:𝑐𝑜𝑢𝑛𝑡)

) · 100% (23) 

As for accuracy, it refers to the closeness of the count of objects entered/exited to the actual number of 
objects entered/exited. Accuracy values are computed separately for both objects entering and objects 
exiting since the algorithms used are slightly different and can be adjusted independently to improve the 
performance of one without affecting the other. To calculate the accuracy, Formula 24 is used (the 
percentage error between the count and actual value of objects that entered/exited is subtracted from 
100%): 

 (1 −
|𝑂𝑏𝑗𝑒𝑐𝑡𝑠 𝑒𝑛𝑡𝑒𝑟𝑒𝑑,𝑒𝑥𝑖𝑡𝑒𝑑:𝑎𝑐𝑡𝑢𝑎𝑙−𝑂𝑏𝑗𝑒𝑐𝑡𝑠 𝑒𝑛𝑡𝑒𝑟𝑒𝑑,𝑒𝑥𝑖𝑡𝑒𝑑:𝑐𝑜𝑢𝑛𝑡|

𝑂𝑏𝑗𝑒𝑐𝑡𝑠 𝑒𝑛𝑡𝑒𝑟𝑒𝑑,𝑒𝑥𝑖𝑡𝑒𝑑:𝑎𝑐𝑡𝑢𝑎𝑙
) · 100% (24) 

The performance values for a few stream segments are displayed in the following table (Table 4): 
Table 4: Motion detection results (using software developed in this project) 

Stream name Stream info Obj. 
enter 
(cnt.) 

Obj. 
enter 
(act.) 

Obj. 
exit 

(cnt.) 

Obj. 
exit 

(act.) 

Consistency 
 

Accuracy 
(enter) 

Accuracy 
(exit) 

Example 1 
(vehicles) 

172.168.10.32 
14 June 2017 
08:55-09:00 

55 52 47 50 88% 94.23% 94% 

Example 2 
(vehicles) 

172.168.10.32 
14 June 2017 
12:10-12:15 

53 50 51 52 92.16% 94% 98.08% 

Example 3 
(vehicles) 

172.168.10.32 
14 June 2017 
12:30-12:35 

58 60 53 56 98.13% 96.67% 94.64% 



Appendix H  53 
 

 
 

Example 4 
(pedestrians) 

172.168.10.30 
05 May 2017 
12:00-12:10 

20 22 18 20 100% 90.91% 90% 

Example 5 Clip included 
with reference 
software [34], 
duration 00:12  

5 5 5 5 100% 100% 100% 

*Note: The software was found to perform worse (both in terms of consistency and accuracy when the 
shadow mask was enabled, so this algorithm was disabled when collecting this data 
From the above performance values, one can see that the performance of the motion detection software 
is excellent, for both pedestrians and vehicles. In all cases, both consistency and accuracy are above 90% 
or very near that figure, so the error introduced over the true measurement is under 10%. Most of the 
time, the count of vehicles entering is higher than the actual number of vehicles that passed through the 
area, which is most likely due to vehicles entering a designated entrance zone, stopping within, and then 
starting to move again, which leads to a double count. As for the vehicle exit counts, they are 
systematically lower than the actual vehicle counts. One explanation for this lack of detection is that 
vehicles are moving particularly slowly during that period, so motion detection fails to detect some 
vehicle (insufficient motion to exceed threshold). Another reason for the poor result is that vehicles are 
close to each other: object detection fails to distinguish these vehicles and groups them as one object, a 
phenomenon that is exacerbated in the morning because the shadow mask is currently disabled. 
Considering the above results, the motion detection software works very well, but can be improved 
further. The most obvious change would be to improve contour segmentation to ensure better detection 
of multiple nearby vehicles. This would heavily involve improvements to the shadow masking algorithm 
(see section 5.2.3.1), as well as a potential decrease in dilation kernel size (see section 3.4.3). Another 
one would be to increase sensitivity to low motion, which causes objects to be barely visible in the 
difference frame; this would mainly be achieved through a decrease in white threshold (see section 
3.4.3). 
4.2.2 Non-ideal conditions 
4.2.2.1 Long shadows 
The motivation for developing the shadow mask (see section 3.4.2) were the long shadows that objects 
cast early in the morning or in the evening, which are detected as moving objects. They often cause 
multiple actual objects to be detected as a single one if the shadow of a given object overlaps with 
another. However, a disadvantage of the shadow mask is that dark portions of vehicles (namely windows 
and the bodies of black and grey vehicles) are extremely similar to shadows, so they can be falsely 
detected and masked. This implies a tradeoff in using the shadow mask: it can either be very effective at 
removing shadows and cause misses of dark vehicles in the process, or less effective at removing 
shadows but safer against missing actual vehicles. Setting the parameters of the shadow mask 
appropriately is thus a very delicate balancing act, and in the end it was determined that the best results 
(see section 4.2) would be obtained by disabling it. As expected, in this configuration, the highest 
percentage errors occur during the morning test scene (Example 1: 88% consistency, 94.23%/94% 
accuracy), where shadows caused some detection mistakes, while the daytime scenes (Example 2: 
92.16% consistency, 94%/98.08% accuracy and Example 3: 98.13% consistency, 96.67%/94.64% accuracy) 
show much better results. Therefore, long shadows definitely pose a problem in the current optimal 
configuration (where the shadow mask is not active). 
For examples of advantages and disadvantages of the shadow mask when enabled or disabled, see the 
following (Figure 52, Figure 53): 



Appendix H  54 
 

 
 

  

Figure 52: Shadow mask advantage: better ability to distinguish multiple vehicles when shadow mask on 

(left) than off (right) 

  
Figure 53: Shadow mask disadvantage: detection misses of dark vehicles when shadow mask on (left) and 

not when off (right) 

4.2.2.2 Wind 
In the presence of heavy winds that cause the camera to shake, the object detection algorithm can fail. 
Indeed, if the camera shakes, the (grayscale) pixels in each frame can be slightly different in brightness 
from those of the previous, leading to a non-zero difference frame (see section 3.4.1) even where there is 
no actual motion. In most cases, the thresholding operation (see section 3.4.3) will have a white 
threshold high enough to not cast these regions to white in the final difference frame, and they will not 
affect contour detection. However, if the shaking of the camera is substantial enough, these regions of 
false motion will be reflected in the final difference frame and their contours will be detected.  
Generally, when this occurs, a very large contour taking up most of the frame will be detected for a brief 
period. Since the entrance and exit zones are near the edges of the frame, it is unlikely that the contour’s 
centroid will be located in one of the zones, so it should not cause any false counts on its own. However, 
if there are currently any actual object contours in the frame, it will cause them to disappear (by merging 
with the false contour), then reappear. This will at least break contour tracking (i.e. the proper origin and 
exit point of the particular contour will not be written to the log file). If the object contours are currently 
located in entrance/exit zones, it could cause counting issues, such as double counts or missed counts. 
Figure 54 below shows the potential consequences when false contours are detected in excessive winds: 



Appendix H  55 
 

 
 

 
Figure 54: False contours being detected due to heavy winds obscuring designated entrance zones 

4.2.3 Comparison to other software 
To compare against this project’s traffic detection software that uses motion detection, the “Vehicle 
Detection, Tracking and Counting” software written by Andrews Sobral in 2014 (and updated in 2017) 
was used [34]. It is the closest software to the one developed in this project: both feature vehicle 
detection using motion detection and vehicle tracking, and count vehicles when they pass through a 
region of interest. There are, however, a few differences in implementation. The reference software does 
not feature distinction between pedestrians and vehicles; it seems to detect contours of any moving 
object. Furthermore, it has a much more rudimentary way of counting objects: instead of monitoring 
contours that appear and disappear, it simply adds to a count when an object’s centroid crosses a region 
of interest (line). Unfortunately, this approach only works for vehicle detection (because each lane is one-
way); for pedestrian detection, it is impossible to tell whether a pedestrian that crossed a line walked in 
or out of the frame. Therefore, the reference software was only tested using the above vehicle detection 
clips, not the pedestrian one. 
The configuration for testing the reference software is the following: the position of each line was set 
where it appeared to be most appropriate (which could be suboptimal because the intricate details of the 
functioning of the reference software are not known). However, two main sources of error were avoided: 
the lines were far enough from the edges of the frame so that incoming vehicles would be detected well 
in advance of crossing the line, and lines were placed such that the number of pedestrians crossing them 
would be minimized. Furthermore, there did not appear to be a way to set multiple lines at once, so 
different instances of the software were ran concurrently, each with a line that monitored a designated 
entrance/exit zone (the lines were placed in a way that minimizes vehicles crossing two different lines). 
For the video clips, the exact same ones as for this project’s software were used, but they were scaled 
down by a factor of 1:2 because the reference software operated far slower than real-time at the original 
resolution; this did not affect the vehicle count. The testing results are the following (Table 5): 
Table 5: Motion detection results (using reference software [34]): 

Stream name Stream info Obj. 
enter 
(cnt.) 

Obj. 
enter 
(act.) 

Obj. 
exit 

(cnt.) 

Obj. 
exit 

(act.) 

Consistency 
 

Accuracy 
(enter) 

Accuracy 
(exit) 

Example 1 
(vehicles) 

172.168.10.32 
14 June 2017 
08:55-09:00 

203 52 99 50 32% -190.38% 2% 



Appendix H  56 
 

 
 

Example 2 
(vehicles) 

172.168.10.32 
14 June 2017 
12:10-12:15 

112 50 74 52 56.52% -24% 57.69% 

Example 3 
(vehicles) 

172.168.10.32 
14 June 2017 
12:30-12:35 

140 60 93 56 62.45% -33.33% 33.93% 

Example 5 Clip included 
with reference 
software [34], 
duration 00:12  

5 5 5 5 100% 100% 100% 

The performance of the reference software in this project’s environment is very poor (in some cases, it 
achieves a negative accuracy, which means that the percentage error between the count and actual 
values is higher than 100%!) In comparison, this project’s software has no accuracy result below 90% 
(percentage error smaller than 10%). Indeed, the reference software seems to be optimized only for 
cases such as the included test file, where there is a clear top-down view of each lane, only vehicles are 
present, and they are constantly moving in the same direction at moderate speeds. It fails completely 
when faced with an environment where there are pedestrians, cyclists, and vehicles present, and where 
vehicles often move very slowly or stop and then continue moving. These factors explain the software’s 
poor performance: it tends to count far more vehicles than there actually are, partly due to counting 
pedestrians and cyclists as vehicles, and partly because vehicles that cross the detection region of 
interest (line) very slowly are counted multiple times. This project’s software is therefore clearly superior 
to other available software: it performs far better in the actual environment, while easily matching the 
performance of the reference software in its own optimal test case (it achieved a consistency and 
accuracy of 100% in Example 5 after only a few tweaks). 

4.3 Software performance and detection accuracy with different resolutions and frame rates 
4.3.1 Resolution and frame rate sensitivity 
It would be very practical if lower quality video files could be used for motion detection purposes, since 
continuously streaming video at the source quality (1280x720, 25 FPS) takes a significant amount of 
bandwidth, which, multiplied by the number of intersections monitored, can be excessive. However, 
since the integrity of the software accuracy is the most important metric, the parking and traffic count 
programs must be tested with different resolutions and frame rates, and the recommendation to reduce 
footage quality cannot be made if any significant degradation in accuracy is found. 
For traffic detection, the test files were the same as the ones used to obtain the initial results (see section 
4.2). Since vehicles are much faster than pedestrians and should be more impacted by any change in 
footage, only the vehicle test cases (Examples 1, 2, and 3) were tested. The footage (originally 1280x720, 
25 FPS) was re-encoded at lower resolutions and frame rates using the FFmpeg software, in the following 
manner: 

 Resolution scaling: converted video file to target resolution to lower image quality, then 
converted back to 1280x720 to keep software parameters consistent 

 Frame rate scaling: converted video file to target frame rate without increasing video speed (by 
dropping rest of frames) 

The results of the software accuracy tests at different resolutions and frame rates are shown in the 
following tables (Table 6 and Table 7), as well as the following graphs and analyzed below: 
Table 6: Comparison of accuracy of motion detection software at different resolutions 

Example 1 (52 entered, 50 
exited) 

Original 
(720p) 

Scaled 80% Scaled 60% Scaled 40% Scaled 20% 

Entered 60 59 53 54 49 



Appendix H  57 
 

 
 

Exited 47 48 49 53 55 

% error entered 15.38 13.46 1.92 3.85 5.77 

% error exited 6.00 4.00 2.00 6.00 10.00 

Bit rate (kbps) 6131 1866 1472 1088 771 

Example 2 (51 entered, 51 
exited) 

Original 
(720p) 

Scaled 80% Scaled 60% Scaled 40% Scaled 20% 

Entered 51 51 50 46 45 

Exited 47 52 55 53 58 

% error entered 0.00 0.00 1.96 9.80 11.76 

% error exited 7.84 1.96 7.84 3.92 13.73 

Bit rate (kbps) 6133 1432 1048 740 515 

Example 3 (60 entered, 56 
exited) 

Original 
(720p) 

Scaled 80% Scaled 60% Scaled 40% Scaled 20% 

Entered 49 53 50 53 40 

Exited 56 55 58 59 61 

% error entered 18.33 11.67 16.67 11.67 33.33 

% error exited 0.00 1.79 3.57 5.36 8.93 

Bit rate (kbps) 6132 1556 1182 862 627 

Note: These measurements are made with a different version of the software, so results may differ from 
those presented in section 4.2.1 
Although it is not immediately obvious which resolution provides the best result, a trend can be detected. 
When reducing the resolution, the best overall accuracy (considering entered and exited counts) occurs 
at the 80% scaling mark (see Figure 56 and Figure 57), although Example 1 (see Figure 55) performs 
significantly better at the 60% mark. This is likely due to insufficient performance of the test machine and 
not a flaw in the algorithm; for a possible explanation of this phenomenon, refer to software 
performance analysis (section 4.3.2.3). However, accuracy is generally good at around 60% or 80% of 
original resolution (depending on clip), with a percentage error generally under 10%, so resolution can be 
decreased up to that level without affecting accuracy significantly. Transcoding the footage at 80 or 60% 
of the original resolution also reduces the bit rate from 6132 kbps (average) to 1618 kbps or 1234 kbps, 
or a 73.6% to 79.9% reduction in file size. 

 
Figure 55: Traffic software accuracy at different resolutions (Example 1) 

0

2

4

6

8

10

12

14

16

18

Original (720p) Scaled 80% Scaled 60% Scaled 40% Scaled 20%

%
 e

rr
o

r

Resolution

Traffic software accuracy at different resolutions (Ex. 1)

Entered

Exited



Appendix H  58 
 

 
 

 

 
Figure 56: Traffic software accuracy at different resolutions (Example 2) 

 

 
Figure 57: Traffic software accuracy at different resolutions (Example 3) 

Table 7: Comparison of accuracy of motion detection software at different frame rates 

Example 1 (52 entered, 50 
exited) 

Original (25 
FPS) 

80% (20 
FPS) 

60% (15 
FPS) 

40% (10 
FPS) 

20% (5 FPS) 

Entered 60 57 50 48 29 

Exited 47 47 47 49 37 

% error entered 15.38 9.62 3.85 7.69 44.23 

% error exited 6.00 6.00 6.00 2.00 26.00 

Bit rate (kbps) 6131 3576 3321 2965 2528 

Example 2 (51 entered, 51 
exited) 

Original (25 
FPS) 

80% (20 
FPS) 

60% (15 
FPS) 

40% (10 
FPS) 

20% (5 FPS) 

Entered 51 51 50 48 24 

Exited 47 50 51 45 36 

0

2

4

6

8

10

12

14

16

Original (720p) Scaled 80% Scaled 60% Scaled 40% Scaled 20%

%
 e

rr
o

r

Resolution

Traffic software accuracy at different resolutions (Ex. 2)

Entered

Exited

0

5

10

15

20

25

30

35

Original (720p) Scaled 80% Scaled 60% Scaled 40% Scaled 20%

%
 e

rr
o

r

Resolution

Traffic software accuracy at different resolutions (Ex. 3)

Entered

Exited



Appendix H  59 
 

 
 

% error entered 0.00 0.00 1.96 5.88 52.94 

% error exited 7.84 1.96 0.00 11.76 29.41 

Bit rate (kbps) 6133 3165 2977 2539 2212 

Example 3 (60 entered, 56 
exited) 

Original (25 
FPS) 

80% (20 
FPS) 

60% (15 
FPS) 

40% (10 
FPS) 

20% (5 FPS) 

Entered 49 49 49 48 33 

Exited 56 54 53 51 34 

% error entered 18.33 18.33 18.33 20.00 45.00 

% error exited 0.00 3.57 5.36 8.93 39.29 

Bit rate (kbps) 6132 3251 3037 2661 2320 

Note: These measurements are made with a different version of the software, so results may differ from 
those presented in section 4.2.1 
Reducing the frame rate has a much less consistent effect on detection accuracy results than reducing 

resolution. The sweet spot for each clip is different: for Example 1, the lowest overall error is at 40% or 10 

FPS (see Figure 58), for Example 2 it is between 60% to 80% or 15 to 25 FPS (see Figure 59), and for 

Example 3 it is at 100% or 25 FPS (see Figure 60). The only conclusion is that at 5 FPS does the accuracy 

decrease significantly, with percentage errors jumping up to 50% at that level. Furthermore, reducing 

frame rates does not have quite the same effect as reducing resolution: even at 20% FPS, the average bit 

rate only goes from 6132 kbps to 2353.3 kbps, or only a 61.6% reduction of file size. 

 
Figure 58: Traffic software accuracy at different frame rates (Example 1) 

 

0

5

10

15

20

25

30

35

40

45

50

Original (25) 80% (20) 60% (15) 40% (10) 20% (5)

%
 e

rr
o

r

Frame rate (FPS)

Traffic software accuracy at different frame rates (Ex. 1)

Entered

Exited



Appendix H  60 
 

 
 

 
Figure 59: Traffic software accuracy at different frame rates (Example 2) 

 

 
Figure 60: Traffic software accuracy at different frame rates (Example 3) 

Considering the above results and the effects on bit rate, the best suggestion for reducing file size in the 
traffic detection application is scaling the video down to 60% to 80% frame rate (a more accurate 
percentage may be obtained by testing more resolution scaling factors with more clips). In addition to 
improving the detection accuracy, lowering the recording quality via resolution decreases bit rates by 
approximately 80%, and could increase the amount of footage that can be transferred over the same 
network connection by a factor of approximately 5. However, for the sake of reducing the file size, the 
frame rate should not be altered: the reduction in bit rate is much less than by changing the resolution 
and there does not seem to be a setting where the majority of clips perform best. It would be possible to 
reduce both the resolution and frame rate, but once again this is not recommended due to the 
unpredictable effect of changing the frame rate and the relatively low impact on video file size. 
As for parking detection, the test files were chosen from the video clips used for accuracy testing (see 
section 4.1). Among those, the clips where the software developed in this project made detection 
mistakes (Clip 4, Clip 8, Clip 14) were chosen because using them will reveal potential accuracy 
improvements from reducing resolution or frame rate. The footage (originally 1280x720, 10 FPS) was re-
encoded at lower resolutions and frame rates using the FFmpeg software in the same manner as for the 

0

10

20

30

40

50

60

Original (25) 80% (20) 60% (15) 40% (10) 20% (5)

%
 e

rr
o

r

Frame rate (FPS)

Traffic software accuracy at different frame rates (Ex. 2)

Entered

Exited

0

5

10

15

20

25

30

35

40

45

50

Original (25) 80% (20) 60% (15) 40% (10) 20% (5)

%
 e

rr
o

r

Frame rate (FPS)

Traffic software accuracy at different frame rates (Ex. 3)

Entered

Exited



Appendix H  61 
 

 
 

motion detection tests. The results of the software accuracy tests at different resolutions and frame rates 
are shown in Table 8, Table 9 and graphs (Figure 61 and Figure 62) and analyzed below: 
 
Table 8: Comparison of accuracy of parking detection software at different resolutions 

Clip 4 Original (720p) Scaled 80% Scaled 60% Scaled 40% Scaled 20% 

Mistakes 1 1 1 2 3 

% Mistakes 9.09 9.09 9.09 18.18 27.27 

Bit rate (kbps) 1998 880 746 544 339 

Clip 8 Original (720p) Scaled 80% Scaled 60% Scaled 40% Scaled 20% 

Mistakes 1 0 0 1 5 

% Mistakes 9.09 0 0 9.09 45.45 

Bit rate (kbps) 2169 806 657 477 311 

Clip 14 Original (720p) Scaled 80% Scaled 60% Scaled 40% Scaled 20% 

Mistakes 1 1 1 3 2 

% Mistakes 9.09 9.09 9.09 27.27 18.18 

Bit rate (kbps) 1576 706 561 381 235 

 
Figure 61: Parking software accuracy at different resolutions 

In terms of reducing resolution, it seems that scaling all the way down to 80% or even 60% does not 

affect results negatively, and there is even a small improvement in Clip 8, with the number of mistakes 

decreasing to 0 (see Figure 61). However, when observing the detection results in the output frame, it is 

clear that decreasing the resolution reduces the accuracy: at 100% resolution, most parking spot 

occupancy is detected with 4 out of 4 polygons being the correct state (see section 3.3.1), while at 80% 

and 60%, the occupancy is often detected with 3 or even only 2 polygons being the correct state, so there 

is a much higher risk of eventual detection error. Furthermore, in Clip 8, the detection mistake is due to 

non-ideal camera setup (text overlay overlapping the parking spot and creating artificial edges, see 

section 5.1.1), so it is not a true detection mistake, and the fact that it does not occur at lower resolutions 

simply shows that the Laplacian algorithm is becoming less reliable as resolution decreases. In summary, 

0

1

2

3

4

5

Original
(720p)

Scaled 80% Scaled 60% Scaled 40% Scaled 20%

N
u

m
b

e
r 

o
f 

m
is

ta
ke

s

Resolution

Parking software accuracy at different resolutions

Clip 4 mistakes

Clip 8 mistakes

Clip 14 mistakes



Appendix H  62 
 

 
 

even though numerical results indicate that reducing resolution to 60% will reduce bit rate significantly 

(from an average of 1914.3 kbps down to 654.7 kbps at 60%, or a 65.8% improvement) while not 

decreasing accuracy, the recommendation to reduce resolution cannot be made when considering actual 

observations. 

Table 9: Comparison of accuracy of parking detection software at different frame rates 

Clip 4 Original (10) 80% (8) 60% (6) 40% (4) 20% (2) 

Mistakes 1 1 1 1 1 

% Mistakes 9.09 9.09 9.09 9.09 9.09 

Bit rate (kbps) 1998 1221 1106 1012 898 

Clip 8 Original(10 FPS) 80% (8 FPS) 60% (6 FPS) 40% (4 FPS) 20% (2 FPS) 

Mistakes 1 1 1 1 1 

% Mistakes 9.09 9.09 9.09 9.09 9.09 

Bit rate (kbps) 2169 1232 1170 1074 957 

Clip 14 Original (10) 80% (8) 60% (6) 40% (4) 20% (2) 

Mistakes 1 1 0 0 0 

% Mistakes 9.09 9.09 0.00 0.00 0.00 

Bit rate (kbps) 1576 995 960 885 859 

 
Figure 62: Parking software accuracy at different frame rates 

As for reducing the frame rate, the results are very consistent, with almost every clip remaining at 1 

detection mistake. Although Clip 14 shows an improvement at 6 FPS and below, with the single detection 

error disappearing (see Figure 62), this is purely due to a very improbable timing anomaly: the sampling 

of parking spot detection (see section 3.3.1) occurred at slightly different frames and the parking spot 

remained at 2/4 occupancy for the rest of the test, so there was no chance to recover from the error. In 

reality, the detection results in terms of parking polygon status are not affected. More than 

approximately 2 frames per second of data is simply wasted for the parking detection software, so 

0

1

2

3

4

5

Original (10) 80% (8) 60% (6) 40% (4) 20% (2)

N
u

m
b

e
r 

o
f 

m
is

ta
ke

s

Frame rate (FPS)

Parking software accuracy at different frame rates

Clip 4 mistakes

Clip 8 mistakes

Clip 14 mistakes



Appendix H  63 
 

 
 

reducing the frame rate all the way down to 2 can reduce bit rates from an average of 1914.3 kbps to 

904.7 kbps, or a 52.74% reduction, without affecting results in the great majority of scenarios. 

4.3.2 Software performance and hardware required 
Significant savings could be obtained if the parking and motion detection programs could run on low-cost 
hardware, especially if the solution ends up being deployed en masse. Even better would be the 
possibility of performing the parking detection and traffic count on-site with a low-power IoT device 
(such as a Raspberry Pi), which would save tremendous amounts of bandwidth, as the video footage will 
not have to be transmitted over the network. However, the recommendation to use low-end hardware 
cannot be made if it can lead to worse results than what the results demonstrate, so the performance of 
the software must be evaluated on the current hardware by monitoring the following key metrics: frame 
rate/frame times, and CPU/memory usage. 
Performance testing consists of the same test clips as the ones for accuracy (see section 4.3.1). The frame 
times are recorded for the entire duration and are used to calculate an average frame rate, the 
processing time in minutes, and the percentage of real-time speed the software achieves. For resource 
utilization testing, one clip for both parking and motion detection is run at all resolution and frame rate 
configurations, and software CPU and RAM usage are recorded every 10 seconds. The test system is a 
VMWare virtual machine that has been allocated 4 cores of an Intel® Xeon(R) CPU E5-2650 v2 @ 
2.60GHz, has 15.5 GiB of RAM, and runs Linux CentOS 7 64-bit. The performance results are shown in 
tables and the average results for all clips are displayed in charts in section 4.3.2.1. The resource 
utilization results are displayed in tables and graphs in section 4.3.2.2, then analyzed. 
4.3.2.1 Software performance 

Table 10: Performance of traffic software at different resolutions 

Example 1 Original (720p) Scaled 80% Scaled 60% Scaled 40% Scaled 20% 

Average FPS 8.325 8.335 8.337 8.336 8.337 

Processing time 5.005 5.005 5.004 5.004 5.004 

% of real-time speed 99.90 99.90 99.92 99.92 99.92 

Example 2 Original (720p) Scaled 80% Scaled 60% Scaled 40% Scaled 20% 

Average FPS 8.325 8.336 8.337 8.337 8.337 

Processing time 5.005 5.002 5.002 5.002 5.002 

% of real-time speed 99.90 99.96 99.97 99.97 99.97 

Example 3 Original (720p) Scaled 80% Scaled 60% Scaled 40% Scaled 20% 

Average FPS 8.327 8.364 8.365 8.365 8.365 

Processing time 5.004 5.002 5.001 5.001 5.001 

% of real-time speed 99.93 99.97 99.98 99.99 99.98 



Appendix H  64 
 

 
 

  
Figure 63: Performance of traffic software at different resolutions 

From the data in Table 10 and Figure 63, the performance of the traffic software does not improve when 

resolution is decreased, since the software already operates essentially in real-time, at an effective frame 

rate of nearly 8.33 FPS (which corresponds to the 25 FPS of the original clip, considering that the motion 

detection algorithm uses only one-third of the frames). Therefore, the recommended method for 

reducing file size (see section 4.3.1) does not simultaneously improve software performance, but only 

because performance is already at its maximum. 

Table 11: Performance of traffic software at different frame rates 

Example 1 Original (25 FPS) 80% (20 FPS) 60% (15 FPS) 40% (10 FPS) 20% (5 FPS) 

Average FPS 8.325 6.668 5.000 3.333 1.667 

Processing time 5.005 5.004 5.006 5.005 5.009 

% of real-time speed 99.90 99.91 99.87 99.90 99.82 

Example 2 Original (25) 80% (20) 60% (15) 40% (10) 20% (5) 

Average FPS 8.325 6.668 5.000 3.334 1.667 

Processing time 5.005 5.004 5.006 5.005 5.009 

% of real-time speed 99.90 99.91 99.87 99.91 99.83 

Example 3 Original (25) 80% (20) 60% (15) 40% (10) 20% (5) 

Average FPS 8.327 6.668 5.000 3.333 1.667 

Processing time 5.004 5.004 5.006 5.005 5.009 

% of real-time speed 99.93 99.91 99.87 99.90 99.82 

0

20

40

60

80

100

0

1

2

3

4

5

6

7

8

9

10

Original
(720p)

Scaled 80%Scaled 60%Scaled 40%Scaled 20%

P
e

rc
e

n
ta

ge
 o

f 
re

al
-t

im
e

 s
p

e
e

d

Ef
fe

ct
iv

e
 f

ra
m

e
 r

at
e

 (
FP

S)

Resolution

Traffic software performance at different resolutions

Average
FPS

% Of real-
time
speed



Appendix H  65 
 

 
 

 
Figure 64: Performance of traffic software at different frame rates 

From the data in Table 11 and Figure 64, the performance of the traffic software remains consistently at 

real-time speed, with an effective frame rate that is always one-third of the original clip FPS (8.33 FPS 

effective at 25 FPS, 6.67 FPS effective at 20 FPS, 5 FPS effective at 15 FPS, 3.33 FPS effective at 10 FPS, 

1.67 FPS effective at 5 FPS). 

Even though real-time operation has been achieved on the test machine, the recommendation to run the 

software on a much slower Raspberry Pi or similar machine cannot be made in good faith. Indeed, even if 

only a small percentage of the frames were skipped, some vehicle appearances or disappearances in an 

entrance or exit gate will be missed by the software, since these events sometimes last only a very brief 

amount of time. This can be inferred from the lower detection accuracy when reducing frame rates (see 

section 4.3.1). 

Table 12: Performance of parking software at different resolutions 

Clip 4 Original (720p) Scaled 80% Scaled 60% Scaled 40% Scaled 20% 

Average FPS 4.009 6.391 8.872 9.997 10.012 

Processing time 1.663 1.043 0.751 0.667 0.666 

% of real-time speed 40.09 63.91 88.72 99.97 100.12 

Clip 8 Original (720p) Scaled 80% Scaled 60% Scaled 40% Scaled 20% 

Average FPS 3.769 6.493 8.895 10.005 10.008 

Processing time 3.131 2.125 1.387 1.233 1.232 

% of real-time speed 37.69 58.03 88.95 100.05 100.08 

Clip 14 Original (720p) Scaled 80% Scaled 60% Scaled 40% Scaled 20% 

Average FPS 3.854 6.354 8.796 10.000 10.014 

Processing time 1.297 0.787 0.568 0.500 0.499 

% of real-time speed 38.54 63.54 87.96 100.00 100.14 

0

20

40

60

80

100

0

1

2

3

4

5

6

7

8

9

10

Original
(25)

80% (20) 60% (15) 40% (10) 20% (5)

P
e

rc
e

n
ta

ge
 o

f 
re

al
-t

im
e

 s
p

e
e

d

Ef
fe

ct
iv

e
 f

ra
n

e
 r

at
e

 (
FP

S)

Frame rate (FPS)

Traffic software performance at different frame rates

Average
FPS

% Of
real-time
speed



Appendix H  66 
 

 
 

 
Figure 65: Performance of parking software at different resolutions 

Table 13: Performance of parking software at different frame rates 

Clip 4 Original (25) 80% (20) 60% (15) 40% (10) 20% (5) 

Average FPS 4.009 4.002 4.004 3.993 2.009 

Processing time 1.663 1.333 0.999 0.668 0.664 

% of real-time speed 40.09 50.02 66.73 99.84 100.44 

Clip 8 Original (25 FPS) 80% (20 FPS) 60% (15 FPS) 40% (10 FPS) 20% (5 FPS) 

Average FPS 3.769 3.841 3.836 3.838 2.004 

Processing time 3.131 2.569 1.929 1.286 1.231 

% of real-time speed 37.69 48.01 63.93 95.94 100.22 

Clip 14 Original (25) 80% (20) 60% (15) 40% (10) 20% (5) 

Average FPS 3.854 3.834 3.860 3.842 2.011 

Processing time 1.297 1.043 0.777 0.521 0.497 

% of real-time speed 38.54 47.93 64.33 96.05 100.56 

 

From the results in Table 12 and Figure 65, reducing video resolution linearly increases parking detection 

software performance in a linear fashion (4 FPS or 40% of real-time at full resolution, 6.4 FPS or 64% of 

real-time at 80% resolution, 8.8 FPS or 88% of real-time at 60% resolution), until it reaches 10 FPS, the 

frame rate of the video clip (at 40% of original resolution and below), and tapers there because the 

software operates at 100% of real-time speed. 

 

0

20

40

60

80

100

0

2

4

6

8

10

12

14

16

18

20

Original
(720p)

Scaled 80%Scaled 60%Scaled 40%Scaled 20%

P
e

rc
e

n
ta

ge
 o

f 
re

al
-t

im
e

 s
p

e
e

d

Ef
fe

ct
iv

e
 f

ra
m

e
 r

at
e

 (
FP

S)

Resolution

Parking software performance at different resolutions

Average
FPS

% Of real-
time
speed



Appendix H  67 
 

 
 

 
Figure 66: Performance of parking software at different frame rates 

From the results in Table 13 and Figure 66, reducing the frame rate does not change the frame rate of the 
parking software, which stays a hair under 4 FPS, until the frame rate falls below that value and forces 
the software to run at that speed. However, since the frame rate decreases, the percentage of real-time 
performance the software can achieve increases, until it reaches 100% at approximately 4 FPS and 
remains at that level. Therefore, reducing frame rate, the recommended way to decrease video file size 
for parking detection (see section 4.3.1) also brings the software performance closer to real-time, so it is 
highly recommended. 
The parking detection frame rate numbers seem very low, especially at high resolutions, but are 

adequate for this type of application because there are no very brief events: it generally does not matter 

if the software misses a split-second event. Although this is still acceptable on the current system, it 

shows that a low-power IoT system similar to a Rasbperry Pi could definitely not run the parking software 

at anywhere near real-time speeds and the accuracy of its results will likely suffer as a result, so running 

the program on such a device cannot be recommended. 

4.3.2.2 Hardware utilization 

Table 14: CPU and RAM utilization by traffic detection software at different resolutions (Example 1) 

Example 1 Original (720p) Scaled 80% Scaled 60% Scaled 40% Scaled 20% 

CPU average (%) 31.75 19.5 10.5 5.05 1.65 

CPU maximum (%) 38 27 16 7 2 

CPU minimum (%) 27 16 9 4 1 

RAM average (MB) 166.73 111.95 70.91 38.45 19.7 

RAM maximum (MB) 170.6 119.1 71.3 38.7 19.7 

RAM minimum (MB) 161.1 60.3 68 37 19.7 

 

0

20

40

60

80

100

0

1

2

3

4

5

6

7

8

9

10

Original
(10)

80% (8) 60% (6) 40% (4) 20% (2)

P
e

rc
e

n
ta

ge
 o

f 
re

al
-t

im
e

 s
p

e
e

d

Ef
fe

ct
iv

e
 f

ra
m

e
 r

at
e

 (
FP

S)

Frame rate (FPS)

Parking software performance at different frame rates

Average
FPS

% Of
real-time
speed



Appendix H  68 
 

 
 

 
Figure 67: Traffic software CPU/RAM utilization at different resolutions 

Table 15: CPU and RAM utilization by traffic detection software at different frame rates (Example 1) 

Example 1 Original (25 FPS) 80% (20 FPS) 60% (15 FPS) 40% (10 FPS) 20% (5 FPS) 

CPU average (%) 31.75 26.7 20.15 16.65 8.6 

CPU maximum (%) 38 34 26 18 9 

CPU minimum (%) 27 20 15 15 8 

RAM average (MB) 166.73 169.90 173.44 171.76 172.65 

RAM maximum (MB) 170.6 173.3 176.2 175.5 175.4 

RAM minimum (MB) 161.1 166.2 167.5 166.4 166.4 

 
Figure 68: Traffic software CPU/RAM utilization at different frame rates 

According to the results in Table 14 and Figure 67, the CPU and RAM utilization decrease in an 
exponential fashion when resolution decreases: the most dramatic changes occur from 100% of original 

0

20

40

60

80

100

120

140

160

180

200

0

10

20

30

40

50

60

70

80

90

100

Original
(720p)

Scaled 80% Scaled 60% Scaled 40% Scaled 20%

R
A

M
 u

sa
ge

 (
M

B
)

C
P

U
 u

sa
ge

 (
%

)

Resolution

Traffic software CPU/RAM use at different resolutions

CPU avg

RAM avg

0

20

40

60

80

100

120

140

160

180

200

0

10

20

30

40

50

60

70

80

90

100

Original
(25)

80% (20) 60% (15) 40% (10) 20% (5)

R
A

M
 u

sa
ge

 (
M

B
)

C
P

U
 u

sa
ge

 (
%

)

Resolution

Traffic software CPU/RAM use at different frame rates

CPU avg

RAM avg



Appendix H  69 
 

 
 

resolution to 80%. This trend is consistent with the fact that the traffic software performance cannot 
improve because it already operates in real-time (see section 4.3.2.1). CPU and RAM usage start at 
approximately 30% and 167 MB (original resolution) and decrease all the way down to 1.65% and 20  MB 
(20% of original resolution), but accuracy results at this level are very poor (see section 4.3.1). At 
resolutions ranging from 60% to 80% of the original, where accuracy results are still good (see section 
4.3.1), the CPU usage is between 10% and 20%, and the RAM is between 70 MB and 112 MB. As for 
varying frame rates, according to results in Table 15 and Figure 68, the CPU usage decreases linearly as 
resolution decreases  (from 30% at 25 FPS all the way down to approximately 9% at 5 FPS), and RAM 
usage is approximately constant at around 170 MB. Since software accuracy does not change much until 
frame rate falls below 10 FPS (see section 4.3.1), the CPU utilization could be reduced down to around 
17%. Due to the multi-threaded aspect of the software, which results in CPU load shared equally between 
cores, it is possible to extrapolate the minimum number of cores to run each instance of the software in 
real-time, which should be 3 Intel Xeon cores at original resolution and only 1 core if resolution or frame 
rate are reduced. RAM usage is between 165 MB and 175 MB, and neither resolution or frame rate 
variance causes it to change in a systematic manner when the resolution is decreased. In terms of 
multithreading, all 4 cores share the load nearly equally. Due to the multi-threaded aspect of the 
software, it is possible to extrapolate the minimum number of cores to run each instance of the software 
in real-time, which should be 2 Intel Xeon cores, assuming that the recommendation to reduce video size 
solely through decreasing resolution (see section 4.3.1) is followed and that the CPU usage is 
approximately 60%. 
Table 16: CPU and RAM utilization by parking detection software at different resolutions (Clip 8) 

Clip 8 Original (720p) Scaled 80% Scaled 60% Scaled 40% Scaled 20% 

CPU average (%) 26 25.86 24 16 8.5 

CPU maximum (%) 26 26 24 16 9 

CPU minimum (%) 26 25 24 16 8 

RAM average (MB) 65.75 48.9 32.3 23.05 17.05 

RAM maximum (MB) 66.1 49.9 32.5 23.1 17.1 

RAM minimum (MB) 62.8 47.5 31.5 22.9 16.9 

 
Figure 69: Parking software CPU/RAM utilization at different resolutions 

0

10

20

30

40

50

60

70

80

90

100

0

10

20

30

40

50

60

70

80

90

100

Original
(720p)

Scaled 80% Scaled 60% Scaled 40% Scaled 20%

R
A

M
 u

sa
ge

 (
M

B
)

C
P

U
 u

sa
ge

 (
%

)

Resolution

Parking software CPU/RAM use at different resolutions

CPU avg

RAM avg



Appendix H  70 
 

 
 

Table 17: CPU and RAM utilization by parking detection software at different frame rates (Clip 8) 

Clip 8 Original (25 FPS) 80% (20 FPS) 60% (15 FPS) 40% (10 FPS) 20% (5 FPS) 

CPU average (%) 26 26 26.125 26.4 14.75 

CPU maximum (%) 26 26 27 27 15 

CPU minimum (%) 26 26 26 26 14 

RAM average (MB) 65.75 71.01 69.79 68.22 70.28 

RAM maximum (MB) 66.1 72.3 70.1 70.3 71.3 

RAM minimum (MB) 62.8 68.5 67.6 67.6 69.2 

 
Figure 70: Parking software CPU/RAM utilization at different frame rates 

From the data in Table 16 and Figure 69, when changing resolution, the CPU utilization by the parking 
software was approximately 25% from 100% resolution to 60%, then drops linearly (to 16% at 40% 
resolution and 8.5% at 20% resolution). This trend makes sense because parking software performance 
increases linearly until 60% resolution (see section 4.3.2.1), then hits the 10 FPS cap at 40%, which is the 
point where CPU usage starts to decrease. When varying frame rates, according to data in Table 17 and 
Figure 70, the CPU usage is very consistent at 26% from 10 FPS to 4 FPS, and drops to 15% at 2 FPS, which 
is consistent with results in section 4.3.2.1: the software performs at its maximum capacity from 10 FPS 
to 4 FPS, then is constrained by the video clip frame rate at 2 FPS. The RAM usage was always between 
65 and 72 MB, and remained constant throughout testing, the same result as when frame rate was varied 
in traffic detection. Due to the multi-threaded nature of the software that distributes the load over 
multiple cores, reducing the number of cores (for example, 1 Xeon core instead of 4) would still likely 
produce the same performance, especially if the recommendation to reduce the frame rate down to 2 
FPS (see section 4.3.1) is followed, since the CPU will be far from being maxed out in that scenario. 
4.3.2.3 Motion detection frame time analysis 

During motion detection accuracy testing in section 4.3.1, a somewhat implausible result emerged: the 
accuracy generally improved when resolution was decreased to 80% or even 60%. This should not be the 
case, since the 100% resolution clip has the most detail, and objects should be clearly visible: results 
should be better, or at least equal to lower resolution results. However, in Example 1, the percentage 
error dropped from approximately 15% and 6% to approximately 2% and 2% (entered and exited counts 

0

10

20

30

40

50

60

70

80

90

100

0

10

20

30

40

50

60

70

80

90

100

Original
(10)

80% (8) 60% (6) 40% (4) 20% (2)

R
A

M
 u

sa
ge

 (
M

B
)

C
P

U
 s

ag
e

 (
%

)

Frame rate (FPS)

Parking software CPU/RAM use at different frame rates

CPU avg

RAM avg



Appendix H  71 
 

 
 

respectively) when resolution decreased from 100% to 60%. Poor software performance due to high 
resolution could be a cause, but in testing, the average frame rate numbers were nearly identical (see 
section 4.3.2.1). 
However, by analyzing the frame rate over time, focusing on Example 1 (the most egregious case of 
accuracy increase when reducing resolution), an interesting trend was detected (see Figure 71 and Figure 
72). Although the average frame rate was comparable between the 100% and 60% resolution clip, the 
consistency of frame times, and by extension of frame rate, was much worse in the original resolution 
clip! These frame rate spikes are the most likely cause of detection inconsistencies, and indicate that the 
test system is not fast enough to handle the software when running at 100% resolution, even if it appears 
to run in real-time. 

 
Figure 71: Motion detection frame times and frame rate at 100% resolution (Example 1) 

 
Figure 72: Motion detection frame times and frame rate at 60% resolution (Example 1) 

0

3

6

9

12

15

18

21

24

27

0

20

40

60

80

100

120

140

160

180

0 1 2 3 4 5

Fr
am

e
 r

at
e

 (
FP

S)

Fr
am

e
 t

im
e

 (
m

s)

Time (minutes)

Frame times & frame rate of 100% resolution clip (Ex. 1)

― Frame time
(ms)

― Frame rate
(FPS)

0

3

6

9

12

15

18

21

24

27

0

20

40

60

80

100

120

140

160

180

0 1 2 3 4 5

Fr
am

e
 r

at
e

 (
FP

S)

Fr
am

e
 t

im
e

 (
m

s)

Time (minutes)

Frame times & frame rate of 60% resolution clip (Ex. 1)

― Frame time
(ms)

― Frame rate
(FPS)



Appendix H  72 
 

 
 

4.3.3 Software performance with double speed footage 
To reduce processing times for large amounts of pre-recorded footage, a potential solution would be to 
speed up the video. However, for motion detection, the viability of this solution in terms of accuracy and 
performance must be tested before it can be officially recommended. Therefore, the motion detection 
software will be tested using double speed footage for both consistency and accuracy (metrics defined in 
section 4.2.1), and hardware performance (processing time, average frame rate, and percentage of 
frames that can be analyzed in real-time), similarly to tests performed in section 4.3.2. The test clip is a 5-
minute, 25 FPS video that will be sped up by a factor of 2. There are two ways of doubling the speed of 
the video: by dropping half the frames, or by doubling the frame rate. Both will be tested, resulting in a 
2.5-minute, 25 FPS clip and a 2.5-minute, 50 FPS one. The results of the accuracy tests are shown in Table 
18and the performance results are shown in Table 19, and they are analyzed below: 
Table 18: Comparison of accuracy of motion detection software at different video speeds 

Example 1 
(52 entered, 50 exited) 

Entered Exited % error 
enter 

% error exit 

Original clip 60 47 15.38 6 

2x speed (dropped frames) 51 52 1.92 4 

2x speed (increased FPS) 63 46 21.15 8 

Example 2 
(51 entered, 51 exited) 

Entered Exited % error 
enter 

% error exit 

Original clip 51 47 0 7.84 

2x speed (dropped frames) 49 46 3.92 9.80 

2x speed (increased FPS) 55 53 7.84 3.92 

Example 3 (60 entered, 56 exited) Entered Exited % error 
enter 

% error exit 

Original clip 49 56 18.33 0 

2x speed (dropped frames) 55 51 8.33 8.93 

2x speed (increased FPS) 55 58 8.33 3.57 

Table 19: Comparison of performance of motion detection software at different video speeds 

Example 1 Original clip 2x speed (dropped 
frames) 

2x speed (increased 
FPS) 

Average FPS 8.325 8.323 8.621 

Processing time (min) 5.005 2.507 4.837 

% of real-time speed 99.90 99.71 51.68 

Example 2 Original clip 2x speed (dropped 
frames) 

2x speed (increased 
FPS) 

Average FPS 8.325 8.332 10.674 

Processing time (min) 5.005 2.504 3.907 

% of real-time speed 99.90 99.83 63.99 

Example 3 Original clip 2x speed (dropped 
frames) 

2x speed (increased 
FPS) 

Average FPS 8.327 8.349 10.731 

Processing time (min) 5.004 2.507 3.886 

% of real-time speed 99.93 99.71 64.34 



Appendix H  73 
 

 
 

In Example 2 and Example 3 the lowest error is obtained when doubling the speed by increasing the 
frame rate instead of skipping frames (in Example 3, the results are even better than the original clip!). In 
Example 1, the situation is different: doubling the speed by dropping frames provides the best results by 
far, likely because the software behaves poorly with this particular clip (see section 4.3.2.3 for more 
details). Overall, the accuracy results favor the speed doubling method with frame rate increase. 
Therefore, if there is a significant amount of pre-recorded footage that must be analyzed, doubling the 
speed by increasing the frame rate is an acceptable technique to obtain results that are quite accurate at 
a faster rate. 
However, the speed gains are marginal on the current hardware: even if the clip is half the speed, the 
software cannot process it in real-time (only between 51.68%-64.34% of real-time speed), and the actual 
processing time only decreases by a maximum of 22% (from 5 minutes to 3.886 minutes). Indeed, on the 
current hardware, the motion detection software can only achieve a maximum frame rate of 10.731 FPS, 
which corresponds to a raw video frame rate of 32.193 FPS. If processing time must truly be reduced to 
50% of the original speed, there are two options. Either faster hardware (that can handle 50 FPS video) 
must be used, or the frame skipping technique can be used (for processing speeds of 2.504-2.507 
minutes or almost 100% of real-time speed) at the cost of a less accurate result in general. 

4.4 Comparison of OpenCV and MATLAB implementation of traffic detection 

4.4.1 Comparison of software architecture and library functions 

Both the OpenCV-based traffic detection software (henceforth referred to as the new software) 

developed in this project and its MATLAB counterpart [40] (henceforth referred to as the reference 

software) are based on motion detection. They feature a similar overall architecture layout, dividing the 

problem into three main steps: object detection, tracking, and counting. However, the implementation of 

each of these steps differs significantly between the two programs.  

4.4.1.1 Object detection 

For object detection, the new software isolates foreground (moving) objects from the background by 

performing an absolute difference operation using two or three consecutive frames (see section 3.4.1). 

The reference software uses a different approach: it detects moving objects using foreground detection 

(vision.ForegroundDetector from the computer vision toolbox), using a model of the background to 

generate a binary mask that highlights the foreground in white and the background in black. See Figure 

73 for an example of moving object detection in the reference software. This technique is available in 

OpenCV, through the cv::BackgroundSubtractorMOG2 class, and has been explored in the development 

of the OpenCV software and was not adopted in the end (see section 3.5.5.1). 

Both techniques have their advantages and disadvantages. The difference operation is much more 

straightforward to implement, whereas the foreground technique requires a deeper understanding of the 

background generation algorithm to achieve accurate results. Also, the difference operation technique is 

less sensitive to motion, and creates a very weak outline of moving objects. For this reason, the resulting 

frame must undergo a dilation operation to enhance contours and thresholding to generate a binary 

mask (see section 3.4.3). On the contrary, foreground detection tends to be too sensitive to even the 

slightest perturbations. Therefore, it requires morphological opening and closing operations as well as 

filling “to remove noisy pixels and to fill the holes in the remaining blobs” [40], and the resulting frame 

can be seen in Figure 74. Both OpenCV and MATLAB feature built-in functions for morphological 

operations with variable kernel sizes and shapes. 



Appendix H  74 
 

 
 

 
Figure 73: Moving object detection in the reference software 

 

 
Figure 74: Moving object detection in the reference software after morphological operations 

The new software features some optimizations that are not present in the reference one and enhance 

the accuracy of contour detection. Both motion detection techniques detailed above are vulnerable to 

shadows and detect them as part of objects, but only the new software has a shadow-masking technique 

that attempts to solve this problem (see section 3.4.2). For contour detection, the reference software has 

a very simple criterion for whether to select a contour as a valid object: it must have a certain minimum 

area, whereas the new one applies a multitude of checks. The object’s area is taken into account, but the 

threshold varies depending on where the object is located in the frame thanks to the perspective 



Appendix H  75 
 

 
 

correction (see section 3.5.2). The dimensions and convexity of the contour are also taken into account to 

determine whether its shape fits the required profile. Visually, the reference software displays the 

bounding boxes of contours, whereas the new software displays the exact contour outlines, but this is 

only a visual distinction. In terms of ease of implementation, the reference software is superior thanks to 

features in MATLAB: all relevant contour characteristics (area, centroid, rejection of small contours) are 

conveniently packed in the vision.BlobAnalysis component of the computer vision toolbox, while OpenCV 

requires individual function calls for each of the above parameters. 

4.4.1.2 Object tracking 

Both programs track objects in a similar way: in essence, they define each physical object as initial and 

unique ID value for each object, which also holds information on the (through the ObjectContour object 

for the new software or the track struct for the reference software). They link each detected contour to a 

previously detected object’s contour. They then update each object (ID) with the most recent contour 

characteristics (contour points bounding box, centroid, etc.) and increment the object “age” or “lifetime” 

parameter. Neither OpenCV nor MATLAB provide functionality to perform these operations, the objects 

or structures must be defined manually. 

The main difference between the reference and new programs lies in how each software links contours 

from one frame to the next. The new software has a very straightforward way of tracking objects: it links 

a given contour from the current frame to the one from the previous frame that has the shortest 

Euclidean distance to it (below a certain threshold), ensuring that each old contour is linked to a 

maximum of one new contour. It can also link new contours to old contours up from up to three frames 

behind, ensuring that tracking is not lost if a contour disappears for one or two frames, giving old 

contours priority. For more details, see section 3.5.3.2. 

As for the reference software, it has a much more complex way of linking contours. It first converts each 

detected contour to a track structure, which combines it with parameters such as ID and age. On the next 

frame, the expected position of the contour track is computed based on its previous position and velocity 

using a Kalman filter provided in MATLAB’s computer vision  toolbox (for more information on the 

Kalman filter and its use in MATLAB, see [41]). Then, to actually perform the linking operation, the 

software solves an optimization problem. It “compute[s] the cost of assigning every detection to each 

track using the |distance| method of the |vision.KalmanFilter| […] The cost takes into account the 

Euclidean distance between the predicted centroid of the track and the centroid of the detection. It also 

includes the confidence of the prediction, which is maintained by the Kalman filter” [40]. Solving this 

problem returns a matrix containing each track and the corresponding contour from the current frame 

[40] and the linking operation is done. Then, the tracks which have been assigned a contour are updated 

with the parameters of the contour (centroid, bounding box) and the age of every track (assigned and 

unassigned) is increased. Finally, tracks that have not been assigned a contour for too many frames are 

deleted, as the object is considered to have disappeared. The unassigned tracks that are not yet deleted 

have their predicted position displayed to the user, unlike the new software where they are simply not 

shown. For an example of tracking in the reference software, including predicted track locations, see 

Figure 75. 



Appendix H  76 
 

 
 

 
Figure 75: Object tracking in reference software 

The tracking in the reference software is theoretically is more accurate than the method used in the new 

software, which does not account for the displacement of vehicles when calculating which contour from 

the new frame is closest to each previous frame’s contour, and does not perform any optimization. Such 

a technique could be implemented in the new software, since OpenCV also implements the Kalman filter 

[42], but the advantages may not be significant. Indeed, the lack of prediction of vehicle position in the 

next frame has not been an issue, since vehicles travel relatively slowly at intersections, so it is very 

unlikely that the tracking algorithm wrongly assigns a vehicle’s contour to another vehicle. However, the 

way the reference software handles unassigned tracks is superior to the new software, since it would 

solve a commonly occurring issue where two vehicles are detected as a single contour and one of the 

tracks immediately disappears. 

4.4.1.3 Object counting 

The new and reference programs have vastly different approaches to counting. The new software 

implements a counting algorithm comprising of several steps: detecting the number of new or deleted 

contours, determining where each entered or exited the frame, and incrementing the count if some 

conditions are satisfied (see section 3.5.3.3 for more details). Built-in functions for this purpose are not 

present in OpenCV (or MATLAB for that matter), so they had to be written from scratch. In comparison, 

the reference software simply displays the number of contours currently detected in the frame. This 

method could allow counting the number of vehicles entering and exiting the frame by subtracting the 

contour counts between consecutive frames, but this method is unreliable due to the possibility of 

vehicles stopping in the middle of the frame and not being detected. 

4.4.2 Comparison of software performance and ease of development 

4.4.2.1 Software performance 

In general, MATLAB-developed software performs slower than the C++ OpenCV equivalent [43] [44] 

because MATLAB is interpreted, while C++ is compiled, which means that MATLAB code has to be 

converted to Java and executed during runtime, while C++ code runs directly [43]. This can result in a 



Appendix H  77 
 

 
 

speed difference from 3-4 FPS (MATLAB) to 30 FPS (OpenCV) [43]. Also, OpenCV typically uses far less 

memory than MATLAB for computer vision: for a similar task, MATLAB may require over 1GB and 

OpenCV, only 70MB [43]. However, MATLAB’s linear algebra routines are very fast, so it can sometimes 

outperform C++ code written by non-experts if linear algebra is involved, which is quite likely because 

images are treated as multi-dimensional matrices in computer vision [44]. Overall, if the new and 

reference programs implemented the exact same algorithms, the OpenCV program is expected to 

perform better with less resource utilization, except in some portions such as solving the optimization 

problem for tracking (see section 4.4.1.2). 

In terms of performance for this specific application (traffic counting), it is not very accurate to compare 

the performance of OpenCV and MATLAB using the two programs, since they do not perform the same 

operations (the detection is slightly more complex in the new software, the tracking is more complex in 

the reference one, and the counting is significantly more complex in the new software). Nevertheless, the 

most resource-intensive operations are expected to be the image processing steps, which are similar 

between the two programs, so the comparison is not totally invalid. When collecting performance data, 

the test clip was Example 1 from the motion detection video clips (see section 4.2.1), whose 

performance, CPU utilization, and RAM utilization were found in section 4.3.2.2. When running the 

OpenCV-based new software , CPU usage was between 27% and 38%, with an average of 31.75%. As for 

RAM, the software required between 161.1 MB and 170.6 MB, with an average of 166.73 MB. With this 

resource usage, the software was able to run in real-time (5 minutes to process a 5-minute clip), although 

it only truly processed one-third of the frames (the rest being used to compute the difference frame 

only). As for the MATLAB-based reference software, CPU usage was between 48% and 57%, with an 

average of 50.93%, which is nearly 60% more than OpenCV. It also used a constant 1.6 GB of RAM, a 

whole order of magnitude more than OpenCV requires. With this resource utilization, the software took 

minutes 14.82 minutes to analyze the 5-minute clip, representing a frame rate of 8.434 FPS and only 

33.74% of real-time performance. This discrepancy between the percentage of real-time operation 

between the two programs is mainly due to the fact that the reference software analyzes all frames and 

the new one does only one-third, so it has an effective FPS of 8.325 FPS. However, even taking that into 

account, the new software is more efficient than the reference software: it achieves essentially the same 

frame rate while having lower resource utilization and performing additional image processing steps that 

are not done by the reference software, such as the shadow mask operation. Therefore, one can 

conclude that OpenCV-based software will generally perform better than a MATLAB equivalent. 

4.4.2.2 Ease of development 

In general, MATLAB development can be considered to be easier than OpenCV, for many different 

reasons. MATLAB is a scripting language, while OpenCV is used with C++, a programming language, so 

code that performs the same function is going to be much shorter and more readable in MATLAB than 

OpenCV [43]. Furthermore, C++ is one of the most difficult programming languages because it requires 

memory management [43] [44]. Indeed, during the development of this project, many compilation and 

runtime errors occurred, and took a long time to diagnose and solve due to the nature of C++. It is much 

more convenient to learn and use MATLAB than OpenCV, although one must be careful to write code 

“the MATLAB way” [44] to achieve better performance. It must also be noted that OpenCV can be used 

with Python, which nullifies many of the disadvantages of C++, but also its main advantage, speed [44]. 

Therefore, this alternative cannot be recommended. 



Appendix H  78 
 

 
 

Also, MATLAB provides a very complete and user-friendly development environment, which provides 

more convenient visualization of results, and especially much easier debugging [44]. In comparison, for 

C++, the programmer has the choice of several development environments [43], but neither quite 

matches the simplicity and completeness of the MATLAB one. For example, in MATLAB, the exact line 

where a syntax error or bug occurs is indicated, with a clear description of the error. In comparison, in 

C++ and OpenCV, syntax errors often generate lines upon lines of cryptic messages, and there is 

absolutely no indication as to where runtime errors occur, except the dreaded “segmentation fault” or 

“assertion failed” messages. 

MATLAB also has better documentation than OpenCV [44], which is very useful for non-experts in 

computer vision. Although almost all OpenCV features are documented, the documentation has fewer 

tutorials and less sample code than MATLAB’s and sometimes a very poor explanation of the effect of 

each parameter [44]. This has led to countless hours spent doing trial and error during the development 

of the OpenCV-based software, and using MATLAB would likely have reduced that somewhat. 

Finally, the availability of library functions can play a significant role in ease of use: if one development 

package provides a certain required function and not the other, using the former will greatly simplify the 

task. As seen in section 4.4.1, for this project, neither OpenCV nor MATLAB have a function that the other 

one does not implement, but MATLAB’s implementations are generally easier to use. For future work, it 

must be noted that OpenCV has a much larger library of computer vision functions, but MATLAB has a 

superior machine learning library. Therefore, the choice of software will depend on the direction the 

project takes (continue working with traditional computer vision or move on to machine learning).  

4.4.3 Comparison of software accuracy 

Since the reference software does not support counting in the same way as the new one, a quantitative 

comparison is not possible, so a qualitative comparison of the performance of vehicle detection and 

tracking will be provided. Assuming that the detection and tracking of the reference software can 

perform similarly to the new one, it is expected that the counting algorithm would produce the same 

results if it is implemented in the reference software. However, it would perform somewhat slower in 

light of the findings in section 4.4.2.1. 

4.4.3.1 Qualitative comparison of object detection 

In terms of detection, the reference software does not perform nearly as good as the new one, for 

several reasons. Firstly, the moving object detection using foreground detection is not ideal in an urban 

intersection environment, where the background changes constantly (for example, cars that are stopped 

at a traffic light are detected as part of the generated background). Therefore, the background must be 

regenerated every few seconds. But every time a new background is generated, the mask is completely 

corrupted for a few seconds: most of it becomes white, instead of only the vehicles (see Figure 76). This is 

a similar issue to the one experienced when foreground detection was attempted in the new software 

(see section 3.5.5.1), which led to its rejection. Secondly, the morphological operations are implemented 

rather poorly in the reference software. The opening operation, which is supposed to remove small 

regions of pixel noise, uses a kernel size that is too small and noise remains in the final detection mask. 

The closing operation, which is supposed to close small holes in objects, also uses a smaller-than-optimal 

kernel size, so objects are often detected as multiple contours. Also, the rectangular kernel chosen makes 

contours have rough rectangular edges (see Figure 74), which is why the elliptical kernel was chosen 

when developing the new software (see section 3.4.3). Thirdly, there is no perspective compensation at 



Appendix H  79 
 

 
 

all, only a minimum contour area. This causes issues where too many small contours (glitches) at the 

bottom of the frame (where objects appear largest) are above the threshold area and are detected, and 

where some actual vehicle contours at the top of the frame (where objects appear smallest) are below 

the threshold area and are rejected. Figure 77 shows examples of actual contours not detected while 

glitches are detected. 

 
Figure 76: Corrupted foreground mask in reference software when background model refreshes 

 

 
Figure 77: Glitches detected while actual contours not detected in reference software due to lack of 

perspective correction 

 



Appendix H  80 
 

 
 

4.4.3.2 Qualitative comparison of object tracking 

As for the tracking performance of the reference software, it appears to be better than the new software, 

though it is hard to tell because of all the poor detections inducing errors in tracking. Nevertheless, a few 

advantages over the new software can be seen. When a contour briefly disappears and reappears, the 

new software does not show the contour in the frame where it is not detected, but the reference 

software will show the predicted location of the disappeared contour, providing a better visual feedback 

and reducing the likelihood of the track being lost (due to the matching being done based on the 

predicted location). Furthermore, in the new software, when two contours merge briefly (for a few 

frames), one of the contours will disappear, and when they separate again, it is likely that the tracking 

will be broken for at least one of them, or worse, that the ID value of one of the contours will be assigned 

to the other. In comparison, in the reference software, they will remain as two separate tracks and no 

detection error should occur. 

5. Conclusion 

5.1 Parking detection 
5.1.1 Camera placement suggestions 

 
Figure 78: Parking detection issue due to 

inadequate perspective (zone 0) 

 
Figure 79: Parking detection  issue due to  

inadequate framing (zone 4) and text 
Some difficulties in parking detection are caused by the position of the camera and its perspective. For 
example, the fact that the camera has a perspective view causes issues with vehicles blocking the view of 
parking zones behind them (for example, zone 0 is blocked by 1, 2 is blocked by 0…). This has been 



Appendix H  81 
 

 
 

partially remedied by the multiple polygons per zone (see section 3.3.1). However, a sufficiently tall 
vehicle or one that is parked too close to the edge of a given spot will still cover two or three polygons of 
the adjacent zones, leading to a false detection: despite efforts to resolve this issue in software, it still 
occurs. Another problem related to the camera position is that parking spots 4 and 5 are not entirely 
visible. Therefore, it can be difficult for the detection algorithms to determine whether the spot is 
occupied or free if the vehicle is positioned such that most of it is outside the frame and only a small 
portion of it is visible. The software solution to this is simply to reduce the edge detection threshold for 
partially visible zones so they are marked as occupied if a small portion of the vehicle covers them. 
However, lowering the threshold too much leads to glitches where an obviously empty spot is recognized 
as free due to irregularities of the asphalt, so this solution also has its limitations. The following images 
show examples of wrong detections caused by suboptimal camera position: 
In Figure 78, the car in zone 1 is parked very close to the edge between zones 1 and 0, so its rear covers 
two out of four polygons in zone 0. Therefore, zone 0 could potentially be recognized as occupied while it 
is in fact free, since a transition to 2/4 free zones does not result in a change of state (see section 3.3.1). 
As for Figure 79, it demonstrates the issue of camera framing not including the entirety of parking zone 4: 
although a vehicle is present, only two out of four polygons are marked as occupied, so it could 
potentially be recognized as free by the software. 
Another issue caused by the camera is the presence of the camera name and timestamp that are baked 
into the video stream. They cover some regions of interest, such as zone 5, and their presence causes 
errors in the parking detection. For example, in Figure 79, the top left corner is falsely marked as 
occupied due to the edges from the camera name which contrasts with the pavement. Removing the 
name and timestamp automatically using OpenCV would be extremely difficult to implement, 
computationally expensive, and inaccurate. 

 
Figure 80: Ideal camera setup for parking detection 

Source: http://www.featurepics.com/StockImage/20070709/street-parking-paris-stock-picture-
374677.jpg 

In light of the above findings, the optimal camera position satisfies the following constraints. The most 
important factor is the camera angle: it is positioned so that it has an approximately top-down view to 
solve the perspective issue from Figure 78. It also has framing such that every parking spot to be analyzed 

http://www.featurepics.com/StockImage/20070709/street-parking-paris-stock-picture-374677.jpg
http://www.featurepics.com/StockImage/20070709/street-parking-paris-stock-picture-374677.jpg


Appendix H  82 
 

 
 

is fully visible to solve the issue from Figure 79. Finally, it should not have a timestamp that interferes 
with the visual content of the frame. Another study on stationary vehicle detection (i.e. parking 
detection) confirms that camera angle is critical for this application and should be as high as possible, 
since low camera angles lead to detection issues due to the tridimensional nature of vehicles, but also 
the presence of shadows [45]. An example of ideal camera position taking into account the above factors 
is shown in Figure 80 below: 
5.1.2 Objective achievement 
After the greater part of a month was spent developing and testing the parking detection software, using 
footage from various times of day and weather conditions (except snow, which was impossible), it was 
determined that most of the objectives that were set were achieved. First, the software should be able to 
determine which parking spots and illegal parking zones are occupied or free, which of course comes with 
a certain reliability standard. During testing, in typical conditions, it was found that the reliability was 
very high, above 90% in all cases, and nearly 100% on average (see section 4.1.1). The software is indeed 
capable of analyzing detection results from multiple polygons to accurately determine the parking status 
of a given spot, which it can write to a database (see section 3.1.2). Therefore, this objective is 
considered to be achieved. Then, the program should function autonomously after an initial set up 
process to minimize use of human resources. The current iteration of the program functions across a 
range of light and weather conditions using a single set of parking zone data and image processing 
parameters that are defined in an initial phase and require no modification unless the camera position 
changes, which does not typically occur. Thus, this objective is also achieved. Finally, the software should 
provide reliable detection in non-ideal conditions such as low light and poor weather conditions. 
Although several features were added to deal with difficult conditions, such as histogram equalization for 
night (see section 3.2.2) and denoising for rain (see section 3.2.3), there are still some difficulties in 
parking detection at night, with parking status not being detected properly in several zones in the middle 
of the night (see section 4.1.2). Unfortunately, this third and last objective is still not fully achieved.  
5.1.3 Future work 
There are still improvements that could be done to the parking detection software. Most importantly, the 
reliability of parking detection during night-time must be improved until the success rate approaches that 
of daytime. This could be done through tweaking parameters further, or by adding/modifying parking 
detection algorithms. Also, one could develop an auxiliary piece of software that parses the parking event 
log file, cross-references it with a database indicating the rules of parking (which zone is open for parking 
at which times, how long can a given car park at a certain spot), and issue alerts when illegal parking is 
detected. The user interface could also be improved: it still requires the use of command line and editing 
text files, while a stand-alone executable file and graphical user interface for setting all parameters (video 
stream, settings)… could also be added. 

5.2 Motion detection 
5.2.1 Camera placement suggestions 
Throughout the entire testing phase of the motion detection software, a major difficulty was the camera 
placement. In the initial video steam (intersection of Clarke and Ontario, 172.168.10.30), the camera was 
placed very poorly, as shown in Figure 26 (section 3.4.1). The bottom of the frame, the part of the scene 
where it is easiest to distinguish objects, does not have any vehicles entering/exiting! The camera is also 
tilted, so vehicles entering the frame from the left often appear at the middle bottom part of the frame. 
Furthermore, traffic detection at the top of the frame has many issues. The part where vehicles are the 
most difficult to distinguish due to perspective) has a lot of traffic (vehicles both entering and exiting), so 
many vehicles fail to be counted. Also, a small portion of another intersection is (barely) visible, so many 
vehicles that pass through this intersection are not counted properly (often marked as “exited” without 
being marked as “entered” first). The second video stream (intersection of Jeanne-Mance and President-
Kennedy, 172.168.10.32) is significantly better, since the camera is adjustable using pan, tilt, zoom 



Appendix H  83 
 

 
 

controls. However, the optimal configuration that was found, shown in Figure 8 (section 3.1.3), still has a 
few flaws. In order for the top of the frame to be somewhat visible, the camera had to be tilted so that 
the bottom of the frame is barely visible. Therefore, a small fraction of vehicles that enter from the 
bottom and make a right turn fail to be detected because they only partially enter the frame. 
Furthermore, the same problem occurs with the top part of the frame: vehicles are too small and it can 
be difficult to distinguish them if they follow each other. Considering these findings, the following camera 
placements are suggested depending on the availability of hardware and the priorities of the application.  
For applications that focus purely on obtaining the most accurate counts, the best results would be 
achieved with one camera recording each street and only detecting objects that pass directly 
underneath, as in Figure 81. This would provide the most accurate detection of individual objects, since it 
focuses on the most easily visible ones. It would also require no perspective compensation, since all 
objects would be detected in the same area of the frame. However, this technique requires four cameras 
(for each street), which is a significant investment and is against the principles of multi-purpose cameras 
pursued in this project. Furthermore, since video footage comes from four different cameras, tracking an 
object across the whole frame and thus obtaining statistics on the trajectory of objects will not be 
supported. 
If only one camera is available, the best view would be to look at the entire intersection from the top, as 
in Figure 82. This would have the highest possible view angle, which is suggested in other research on this 
topic because it “limits the occlusion between densely spacely vehicles” [46], which would reduce the 
number of multiple vehicles being combined in a single contour. This solves the problem of vehicles 
overlapping and being difficult to identify, and should minimize the impact of shadows. It also requires no 
perspective adjustment, since there is no perspective issue, and the distortion introduced by the fisheye 
effect is minimal. Furthermore, if both parking and motion detection are to be done with the same 
camera, this perspective will work well for both. However, mounting the camera directly above the 
intersection may not be possible in urban environments, where cameras are most often mounted with a 
low camera angle [46]. Also, detecting pedestrians with this perspective will be very tricky because of 
their very vertical shape: their contour area will vary significantly based on whether they are directly 
below the camera, or closer to the edge of the frame. 

 
Figure 81: Camera looking down a street 

Source: http://transportation.ky.gov/Congestion-Toolbox/PublishingImages/RoadDiets.png 

The next suggestion would be an isometric view, similar to Figure 83. This method is suggested because it 
does not involve looking down a street, so it avoids the problem of having multiple vehicles detected as 
one at the end of the street, where detected vehicles are small and hard to distinguish. It also requires 
little perspective compensation compared to looking down at a street directly. Another significant 
advantage is the fact that all lanes of each street should be visible, unlike a perspective where one of the 

http://transportation.ky.gov/Congestion-Toolbox/PublishingImages/RoadDiets.png


Appendix H  84 
 

 
 

streets goes across the frame. It supports pedestrian detection and should also be the most feasible 
camera perspective to set up in an urban area and to use for multiple purposes. Despite these 
advantages, accuracy is expected to be worse than the above two suggestions, so it should only be 
considered when the functionality advantages it offers are crucial, such as in this project where it was 
used. The following PTZ settings are the closest the camera at Jeanne-Mance and President-Kennedy can 
be to an isometric view: pan 37.9°, tilt -28.6°, zoom 1x (ideally the camera would be mounted higher and 
a tilt of -45° would be used). 

 
Figure 82: Top-down view 

Source: http://farm4.static.flickr.com/3497/3236435965_47f187150a.jpg 

 
Figure 83: Isometric view 

Source: https://i.ytimg.com/vi/HoY8kG2DosA/maxresdefault.jpg 

http://farm4.static.flickr.com/3497/3236435965_47f187150a.jpg
https://i.ytimg.com/vi/HoY8kG2DosA/maxresdefault.jpg


Appendix H  85 
 

 
 

5.2.2 Objective achievement 
After developing and testing this software for more than a month, it was determined that the traffic 
detection objectives were partially achieved. First, the software should be able to detect and distinguish 
pedestrians and vehicles of various classes. This requirement is not entirely satisfied, since the software 
currently only detects vehicles (approximate size and speed of a car), and pedestrians. Cyclists and 
motorcyclists are too small to count as vehicles and too large and/or too fast to count as pedestrians, so 
they are most often ignored (except for a few occasional glitches where they are counted as one or the 
other). The software should also track the detected objects as they pass through the area and count the 
number of them in each direction. This requirement is satisfied: these algorithms work as intended, and 
counts are very accurate (90% and above). The requirement that the software functions autonomously 
after an initial setup process is also satisfied. However, the motion detection software should also 
provide reliable detection even in non-ideal conditions, but it performs somewhat worse in some 
conditions. Indeed, since the shadow mask has temporarily been disabled, shadows are a big problem in 
the morning and evening: they cause multiple vehicle contours to be counted as one, lowering accuracy 
and consistency (the worst results in terms of both metrics are from Example 1, the morning clip). 
5.2.3 Future work 
5.2.3.1 Shadow mask improvements 
The current iteration of the shadow mask generation algorithm has some flaws. The main issue is that the 
color characteristics of shadows change during the day: in the morning and afternoon, shadows are much 
lighter than at midday. Therefore, shadow detection thresholds (section 3.4.2) configured for the 
morning are completely ineffective during the day. This should not be a major problem because shadows 
are only very problematic in the morning, when they are the longest and cause multiple contours to be 
combined into one. However, the fact is that the color profile of shadows is too similar to that of black 
vehicles and causes some of them to be masked out as well. Therefore, for most of the day, using the 
shadow removal algorithm has more disadvantages than advantages. 
One way to solve these problems would be to implement a second set of conditions for determining the 
location of shadows that is based on a different characteristic than chromacity. A characteristic of 
shadows is that they are comprised of few edges compared to objects of interest, so the shadow mask 
should include only areas with few edges. One attempt that was made used the OpenCV’s Laplacian 
function cv::Laplacian() described in section 3.2.2 that detects edges of objects, but it was ineffective 
because it also detected the edge of the shadow, and that is sufficient for the entire shadow to be added 
to the object’s contour. A similar approach was used with success in [47], where color and texture (edge, 
corner) information were used in conjunction to separate shadows and black vehicles accurately. The 
difference is that they used the CIE L*a*b* color space instead of HSV, and the SUSAN mask instead of 
the Laplacian [47]. The SUSAN mask represents the following operations: for each pixel 𝐼(𝑥0, 𝑦0) and all 
neighboring pixels in a 7x7 grid 𝐼(𝑥, 𝑦), compute |𝐼(𝑥, 𝑦) − 𝐼(𝑥0, 𝑦0)|, the absolute difference, then let 
𝐸(𝑥, 𝑦) = 1 if |𝐼(𝑥, 𝑦) − 𝐼(𝑥0, 𝑦0)| ≤ 𝑇 (threshold value) and 0 otherwise [47]. Then, for each pixel 

𝐼(𝑥0, 𝑦0), calculate 𝑁(𝑥0, 𝑦0) =  ∑ 𝐸(𝑥𝑖 , 𝑦𝑖)
7
𝑖=1  where N is the total number of pixels centered at (𝑥𝑖, 𝑦𝑗), 

and define 𝑅(𝑥0, 𝑦0) = 0 if 𝑁(𝑥0, 𝑦0) < 𝑔 (threshold value equal to 
3

4
· 𝑁𝑚𝑎𝑥) and 1 otherwise (a value of 

1 corresponds to a shadow) [47]. Linear filtering is also performed to remove the edge of the shadow, a 
problem that was also encountered [47]. 
5.2.3.2 Feature-based detection 
Most of the issues that arise in identifying the proper contours (vehicles, pedestrians) when using this 
software are due to the fact that only the contours are considered, not features that characterize the 
objects in question. Adding feature-based detection would help separate pedestrians, cyclists, and 
vehicles much more accurately than any algorithm that has been devised so far (based on shape 
dimensions). OpenCV implements a Haar feature-based cascade classifier [48], which will be explored as 
part of the next phase of the project. The disadvantage of this method is that it requires training, with a 



Appendix H  86 
 

 
 

few hundred positive samples that contain the object of interest and negative samples that do not [48]. 
However, once this is done, the Haar classifier is easy to use: select a region of interest in the image, and 
the classifier will output “1” if it contains the object, and “0” if it does not [48]. It could even be used in 
conjunction with motion detection: the difference frame could be used to mask the original frame, and 
the cascade classifier would be applied on the resulting frame, so that it considers only moving objects. 
The next technical report will contain more details about the Haar classifier and potentially other similar 
image detection methods applied to the detection and counting of pedestrians and vehicles as part of the 
SmartCity project. 
  



Appendix H  87 
 

 
 

References 
[1] Nicholas True. “Vacant parking space detection in static images,” University of California, 

San Diego, 17,  May 2007.  
 [2] Sangwon Lee, Dukhee Yoon, and Amitabha Ghosh. "Intelligent parking lot application using 

wireless sensor networks." Collaborative Technologies and Systems, 2008. CTS 2008. International 
Symposium on. IEEE, 2008. 

 [3] Kunfeng Wang, et al. "An automated vehicle counting system for traffic surveillance." Vehicular 
Electronics and Safety, 2007. ICVES. IEEE International Conference on. IEEE, 2007. 

 [4] Guillaume Leduc. "Road traffic data: Collection methods and applications." Working Papers on 
Energy, Transport and Climate Change 1.55 (2008). 
 [5] Yoichiro Iwasaki, Masato Misumi, and Toshiyuki Nakamiya. "Robust vehicle detection 

under various environmental conditions using an infrared thermal camera and its application to road 
traffic flow monitoring." Sensors 13.6 (2013): 7756-7773. 

 [6] GitHub (user eladj). (2016, Nov 24). Automatic Parking Detection [Online]. Available: 
 https://github.com/eladj/detectParking 
 [7] GitHub (user andrewssobral). (2017, Apr 12). Vehicle Detection, Tracking and Counting 
 [Online]. Available: https://github.com/andrewssobral/simple_vehicle_counting 
 [8] Hardik Madhu. (2013, Sep 27). Motion Detection and Speed Estimation using OpenCV 

[Online]. Available: http://hardikmadhu.blogspot.ca/2013/09/a-simple-and-minimal-aproach-to-
human.html 

 [9] Adrian Rosebrock. (2015, May 25). Basic motion detection and tracking with Python and 
OpenCV [Online]. Available: http://www.pyimagesearch.com/2015/05/25/basic-motion-detection-
and-tracking-with-python-and-opencv/ 

 [10] Matthias Stein. (n.d.). Motion detection using a webcam, Python, OpenCV and Differential 
Images [Online]. Available: http://www.steinm.com/blog/motion-detection-webcam-python-opencv-
differential-images/ 

 [11] OpenCV. (2015, Dec 18). Color conversions [Online]. Available: 
 http://docs.opencv.org/3.1.0/de/d25/imgproc_color_conversions.html 
 [12] OpenCV. (2014, Nov 10). Image Filtering [Online]. Available: 
 http://docs.opencv.org/3.0-beta/modules/imgproc/doc/filtering.html 
 [13] OpenCV. (2015, Dec 18). Histograms - 2: Histogram Equalization [Online]. Available: 
 http://docs.opencv.org/3.1.0/d5/daf/tutorial_py_histogram_equalization.html 
 [14] Stephen M. Pizer et al. “Adaptive histogram equalization and its variations.” Computer 
 vision, graphics, and image processing, vol. 39, no. 3, pp. 355-368, 1987.  
 [15] OpenCV. (2017, May 25). Image denoising [Online]. Available: 
 http://docs.opencv.org/trunk/d5/d69/tutorial_py_non_local_means.html 
 [16] Antoni Buades, Bartomeu Coll, and Jean-Michel Morel. “Non-local means denoising.” 
 Image Processing On Line, vol. 1, pp. 208-212, 2011. 
 [17] OpenCV. (2015, Dec 18). Laplace Operator [Online]. Available: 
 http://docs.opencv.org/3.1.0/d5/db5/tutorial_laplace_operator.html 
 [18] OpenCV. (2017, May 25). Changing the contrast and brightness of an image! [Online]. 
 Available: http://docs.opencv.org/trunk/d3/dc1/tutorial_basic_linear_transform.html 
 [19] OpenCV. (2017, May 26). Canny Edge Detector [Online]. Available: 

http://docs.opencv.org/2.4/modules/imgproc/doc/feature_detection.html?highlight=canny#canny 
 [20] OpenCV. (2017, Jun 08). Creating Bounding boxes and circles for contours [Online]. 

https://github.com/eladj/detectParking
https://github.com/andrewssobral/simple_vehicle_counting
http://hardikmadhu.blogspot.ca/2013/09/a-simple-and-minimal-aproach-to-human.html
http://hardikmadhu.blogspot.ca/2013/09/a-simple-and-minimal-aproach-to-human.html
http://www.pyimagesearch.com/2015/05/25/basic-motion-detection-and-tracking-with-python-and-opencv/
http://www.pyimagesearch.com/2015/05/25/basic-motion-detection-and-tracking-with-python-and-opencv/
http://www.steinm.com/blog/motion-detection-webcam-python-
http://docs.opencv.org/3.1.0/de/d25/imgproc_color_conversions.html
http://docs.opencv.org/3.0-beta/modules/imgproc/doc/filtering.html
http://docs.opencv.org/3.1.0/d5/daf/tutorial_py_histogram_equalization.html
http://docs.opencv.org/trunk/d5/d69/tutorial_py_non_local_means.html
http://docs.opencv.org/3.1.0/d5/db5/tutorial_laplace_operator.html
http://docs.opencv.org/trunk/d3/dc1/tutorial_basic_linear_transform.html
http://docs.opencv.org/2.4/modules/imgproc/doc/feature_detection.html?highlight=canny#ca nny


Appendix H  88 
 

 
 

Available: http://docs.opencv.org/2.4/doc/tutorials/imgproc/shapedescriptors/bounding_ 
rects_circles/bounding_rects_circles.html 

 [21] Andres Sanin, Conrad Sanderson, and Brian C. Lovell. “Shadow detection: A survey and 
comparative evaluation of recent methods.” Pattern recognition, vol. 45, no. 4, pp. 1684-1695, 2012.  

 [22] Clément Fredembach, and Graham Finlayson. “Hamiltonian path-based shadow removal.” 
 Proc. Of the 16th British Machine Vision Conference, vol. 2, no. LCAV-CONF-2017-020, pp. 
 502-511, 2005.  
 [23] Rita Cucchiara, et al. “Detecting moving objects, ghosts, and shadows in video streams.” 
 IEEE transactions on pattern analysis and machine intelligence, vol. 25, no. 10, pp. 1337 
 1342, 2003. 
 [24] OpenCV. (2017, Jun 08). cv::Background SubtractorMOG2 Class Reference [Online]. 

Available: http://docs.opencv.org/trunk/d7/d7b/classcv_1_1BackgroundSubtractorMOG2 
.html 

 [25] Zoran Zivkovic. “Improved adaptive Gaussian mixture model for background subtraction.” 
Pattern recognition, Proceedings of the 17th International Conference on Pattern recognition, 2004. 
ICPR 2004., vol. 2, pp. 28-31, IEEE, 2004.  

 [26] OpenCV. (2016, Dec 23). How to Use Background Subtraction Methods [Online]. 
 Available: http://docs.opencv.org/3.2.0/d1/dc5/tutorial_background_subtraction.html 
 [27] OpenCV. (2017, Jun 8). Motion Analysis and Object Tracking [Online]. Available: 
 http://docs.opencv.org/2.4/modules/video/doc/motion_analysis_and_object_tracking.html 
 [28] John W. Shipman. (2012, Oct 16). The hue-saturation-value (HSV) color model [Online]. 
 Available: http://infohost.nmt.edu/tcc/help/pubs/colortheory/web/hsv.html 
 [29] OpenCV. (2014, Nov. 10). Morphological transformations [Online]. Available: 

http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_morphological_ops/ 
py_morphological_ops.html 

 [30] OpenCV. (2017, Jun 08). Eroding and Dilating [Online]. Available: 
 http://docs.opencv.org/2.4/doc/tutorials/imgproc/erosion_dilatation/erosion_dilatation.html 
 [31] StackOverflow (user Martin Beckett). OpenCV: Matrix Iteration [Online]. Available: 
 https://stackoverflow.com/questions/11977954/opencv-matrix-iteration 
 [32] OpenCV. (2017, Jun 08). Image Thresholding [Online] . Available: 
 http://docs.opencv.org/trunk/d7/d4d/tutorial_py_thresholding.html 
 [33] OpenCV. (2017, Jun 08). Structural Analysis and Shape Descriptors [Online]. Available: 

http://docs.opencv.org/2.4/modules/imgproc/doc/structural_analysis_and_shape_descriptors.html 
 [34] C-H. Teh, and Roland T. Chin. “On the detection of dominant points on digital curves.” 

IEEE Transactions on pattern analysis and machine intelligence, vol. 11, no. 8, pp. 859-872, 1989.  
 [35]  David H. Douglas, and Thomas K. Peucker. “Algorithms for the reduction of the number of 
 points required to represent a digitized line or its caricature.” Cartographica: The 
 International Journal for Geographic Information and Geovisualization, vol. 10, no. 2, pp. 
 112-122, 1973.  
 [36]  Andrew Kirillov. (2007, Mar 27). Motion Detection Algorithms [Online]. Available: 
 https://www.codeproject.com/Articles/10248/Motion-Detection-Algorithms 
 [37]  Charles Poynton. (1997, June 19). Frequently Asked Questions about Color [Online]. 
 Available: http://www.poynton.com/PDFs/ColorFAQ.pdf 
 [38]  OpenCV. (2015, Dec 18). Color conversions [Online]. Available: 
 http://docs.opencv.org/3.1.0/de/d25/imgproc_color_conversions.html 
 [39]  Ming-Kuei Hu. “Visual pattern recognition by moment invariants.” IRE transactions on 
 information theory, vol. 8, no. 2, pp. 179-187, 1962. 

http://docs.opencv.org/2.4/doc/tutorials/imgproc/shapedescriptors/bounding_rects_circles/bounding_rects_circles.html
http://docs.opencv.org/2.4/doc/tutorials/imgproc/shapedescriptors/bounding_rects_circles/bounding_rects_circles.html
http://docs.opencv.org/trunk/d7/d7b/classcv_1_1BackgroundSubtractorMOG2.html
http://docs.opencv.org/trunk/d7/d7b/classcv_1_1BackgroundSubtractorMOG2.html
http://docs.opencv.org/3.2.0/d1/dc5/tutorial_background_subtraction.html
http://docs.opencv.org/2.4/modules/video/doc/motion_analysis_and_object_tracking.html#backgroundsubtractormog2
http://infohost.nmt.edu/tcc/help/pubs/colortheory/web/hsv.html
http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_morphological_ops/py_morphological_ops.html
http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_morphological_ops/py_morphological_ops.html
http://docs.opencv.org/2.4/doc/tutorials/imgproc/erosion_dilatation/erosion_dilatation.html
https://stackoverflow.com/questions/11977954/opencv-matrix-iteration
http://docs.opencv.org/trunk/d7/d4d/tutorial_py_thresholding.html
http://docs.opencv.org/2.4/modules/imgproc/doc/structural_analysis_and_shape_descriptors.html
https://www.codeproject.com/Articles/10248/Motion-Detection-Algorithms
http://www.poynton.com/PDFs/ColorFAQ.pdf
http://docs.opencv.org/3.1.0/de/d25/imgproc_color_conversions.html


Appendix H  89 
 

 
 

 [40]  MATLAB. (n.d.) Motion-Based Multiple Object Tracking [Online]. Available: 
https://www.mathworks.com/help/vision/examples/motion-based-multiple-object-tracking.html 

 [41] Mohinder S. Grewal, "Kalman filtering." International Encyclopedia of Statistical Science. Springer 
Berlin Heidelberg, pp. 705-708, 2011. 

 [42] OpenCV. (2017, Aug 17). cv:KalmanFilter Class Reference [Online]. Available: 
http://docs.opencv.org/trunk/dd/d6a/classcv_1_1KalmanFilter.html 

 [43] Karan Jitendra Thakkar. (2012, Nov 21). What is OpenCV? OpenCV vs. MATLAB —An insight [Online]. 
Available: https://karanjthakkar.wordpress.com/2012/11/21/what-is-opencv-opencv-vs-matlab/ 

 [44]  Satya Mallick. (2015, Oct 30). OpenCV (C++ vs Python) vs MATLAB for Computer Vision [Online]. 
Available: https://www.learnopencv.com/opencv-c-vs-python-vs-matlab-for-computer-vision/ 

 [45]  Hankyu Moon, Rama Chellappa, and Azriel Rosenfeld. "Performance analysis of a simple vehicle 
 detection algorithm." Image and Vision Computing, vol. 20, no. 1, pp. 1-13, 2002. 
 [46]  Norbert Buch, Sergio A. Velastin, and James Orwell. "A review of computer vision techniques for the 

analysis of urban traffic." IEEE Transactions on Intelligent Transportation Systems, vol. 12, no. 3, pp. 
920-939, 2011. 

 [47]  Haiying Zhang, Qirong Zheng, and Guiwen Zheng. “A New Shadow Removal Algorithm 
Based on Susan and CIELAB Color Space.” Proceedings of International Conference on 
Internet Multimedia Computing and Service, ACM, 2014.  

 [48]  OpenCV. (2017, Jun 08). Cascade Classification [Online]. Available: 
http://docs.opencv.org/2.4/modules/objdetect/doc/cascade_classification.html 

https://www.mathworks.com/help/vision/examples/motion-based-multiple-object-tracking.html
http://docs.opencv.org/trunk/dd/d6a/classcv_1_1KalmanFilter.html
https://karanjthakkar.wordpress.com/2012/11/21/what-is-opencv-opencv-vs-matlab/
https://www.learnopencv.com/opencv-c-vs-python-vs-matlab-for-computer-vision/
http://docs.opencv.org/2.4/modules/objdetect/doc/cascade_classification.html

